
i

PI Vision 2019 Extensibility Guide

Community Technology Preview

ii

OSIsoft, LLC

1600 Alvarado St.
San Leandro, CA 94577 USA
Tel: (01) 510-297-5800
Fax: (01) 510-357-8136
Web: http://www.osisoft.com

PI Vision 2019 Extensibility Guide

© 2016 - 2019 by OSIsoft, LLC. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of OSIsoft,
LLC.

OSIsoft, the OSIsoft logo and logotype, Managed PI, OSIsoft Advanced Services, OSIsoft Cloud Services, OSIsoft
Connected Services, PI ACE, PI Advanced Computing Engine, PI AF SDK, PI API,
PI Asset Framework, PI Audit Viewer, PI Builder, PI Cloud Connect, PI Connectors, PI Data Archive,
PI DataLink, PI DataLink Server, PI Developer’s Club, PI Integrator for Business Analytics, PI Interfaces, PI JDBC
driver, PI Manual Logger, PI Notifications, PI ODBC, PI OLEDB Enterprise, PI OLEDB Provider,
PI OPC HDA Server, PI ProcessBook, PI SDK, PI Server, PI Square, PI System, PI System Access, PI Vision,
PI Visualization Suite, PI Web API, PI WebParts, PI Web Services, RLINK, and RtReports are all trademarks of
OSIsoft, LLC. All other trademarks or trade names used herein are the property of their respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft, LLC
license agreement and as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR 52.227, as
applicable. OSIsoft, LLC.

Version: 3.4

Published: 10 May 2019

http://www.osisoft.com/

iii

Contents

Contents
 iii

Symbol extension .. 1
Layers of a PI Vision symbol ... 1

File layout... 1
Before you begin .. 1

Implementation layer .. 1
Definition and registration ... 1
Initialization ... 6
Data shapes.. 7
Data updates .. 9

Presentation layer ... 10
Custom styles ... 11

Configuration layer .. 11
Configuration options .. 12

Symbol formats ... 13
Common format names ... 13
FormatOptions object .. 14
Symbol type switching ... 15

Upgrading existing symbols .. 16
PI Coresight 2016 to PI Coresight 2016 R2 .. 16
PI Coresight 2016 R2 to PI Vision 2017 .. 16

Tool pane extension
 ... 18

Layers of a PI Vision tool pane .. 18
File layout... 18

Implementation layer .. 18
Badging .. 19

Symbol extension

1

Symbol extension

You can extend your PI Vision installation with custom symbols.

Layers of a PI Vision symbol

PI Vision symbols have three major layers:

• Implementation

• Presentation

• Configuration

The implementation layer is a JavaScript file that handles all of the symbol’s implementation logic.
The presentation and configuration layers contain the HTML responsible for the symbol appearance
and symbol configuration, respectively.

File layout

All files for a symbol should be saved in the same directory, the "ext" folder, under:

INSTALLATION_FOLDER\Scripts\app\editor\symbols\.

If you have external library files, create a “libraries” subfolder under the “ext” folder, and place the
external library files in that subfolder.

Before you begin

Before you begin development, OSIsoft recommends that you place PI Vision into debug mode. To
do so, edit the web.config file in your PI Vision installation folder to change the compilation tag,
under system.web, from:

<compilation debug="false" targetFramework="4.6"/>

to

<compilation debug="true" targetFramework="4.6"/>

Debug mode disables the PI Vision bundling and minification system; this makes debugging your
application easier.

Note that in debug mode, PI Vision does not process minified JavaScript files.

Implementation layer

Definition and registration

The JavaScript implementation file has three parts: definition, registration, and initialization.

Based on best practices, all PI Vision symbols should be wrapped in an immediately-invoked
function expression (IIFE). An IIFE is simply a JavaScript function that is executed as soon as it is
defined. The IIFE will take in the global PI Visualization object, passed in as a parameter.

(function (PV) {
 'use strict';
})(window.PIVisualization);

Symbol extension

2

The first step is to create the visualization object, which will be built on later. In this step, you create
a function as a container for your symbol. The function will be extended via PI Vision helper
functions to add some default behaviors.

The next step is to add the symbol registration. In this step, you register your symbol with the PI
Vision symbol catalog.

The next step is to augment the registration with an actual symbol definition. The definition object is
a JSON object (key-value pairs) that sets defaults for the symbol. Possible settings in the object
include:

Parameter Value Notes

typeName
String. Internal unique name
of the symbol.

Required.

displayName
String. Name shown in the
symbol picker menu.

Optional. typeName will be used
if left blank.

datasourceBehavior
Number. Mapping to the
number of datasources the
symbol accepts.

Optional. Can be None, Single,
or Multiple. If not specified
None will be used.

iconUrl
String. Path to the icon to be
used on the symbol selector.

Optional. If not specified, a
default image is displayed on
the symbol selector menu. This
can be the path to any image
file type that can be added to an
HTML tag.

getDefaultConfig
Function. Function returning
the default configuration to
save in the database

Optional. A function used to
specify the collection of
parameters that should be
serialized to the backend
database. By convention, all
properties should begin with an
uppercase letter.

(function (PV) {
 'use strict';

 function symbolVis() { }
 PV.deriveVisualizationFromBase(symbolVis);

})(window.PIVisualization);

Symbol extension

3

Parameter Value Notes

loadConfig
Function. Returns true if the
saved configuration should
be merged into the default
configuration.

Optional. This function is used
to upgrade a previous version
of a symbol's configuration.

templateUrl
String. Path to the
presentation HTML file.

Optional. If omitted, it will look
in the current directory for a
file named “sym-<typeName>-
template.html”

configTemplateUrl
String. Path to the
configuration HTML
file.

Optional. If omitted it will look
in the current directory for a
file named “sym-<typeName>-
config.html”

configTitle

String. Title for
configuration.

Optional. Used in the context
menu when right-clicking the
symbol and in the title of the
configuration pane.

configOptions
Function. Function that
controls what configuration
options are available for this
symbol. It takes in the
symbol and returns an array
of objects controlling
configuration.

Optional. The objects returned
can contain:

action: Callback function to
execute immediately.

title: this is the context menu
text mode: name of the
configuration, so it can be
shared with similar symbol
configurations.

enabled: Boolean when the
menu item should be enabled.

configure
Object. Collection of key/
value pairs to be used on
the configuration pane.

Optional. This is mainly useful
for holding static based
configuration options, such as
localization, and for callbacks
that can be executed from the
configuration pane markup
referenced in
configTemplateUrl.

configInit
Function. Called when the
configuration pane of a
symbol is activated.

Optional.

Symbol extension

4

Parameter Value Notes

StateVariables
Array of Strings. Properties
that will return multistate
information if configured.

Optional. Setting this variable
allows a symbol to be
multistated. The variable
listed will be added to the
symbol's scope and available
for data binding in HTML.

resizerMode
String. The type of resizes
the symbol should
support.

Optional. String used for
determining how a symbols
should resize. Options include:

'' - Empty string. This allows a
symbol to be resized in any
direction. (Default)

AutoWidth: This allows a
symbol's height to be resized
while fitting the width. Used on
text based symbols.

RetainAspectRatio: This
forces a symbol to be resized
with the height and width
staying proportional.

inject
Array of Strings. A list of
services that should be
dependency injected into
the init function.

Optional. Default is empty
array.

visObjectType
Function. Object holding
symbol specific
functionality.

Required. Function that was
extended from
deriveVisualizationFromBase.

formatMap
Object. Collection of key /
value pairs used to map
pre-PI Vision 2017 R2
configuration options to
the current names.

Optional. See Symbol formats.

noExpandSelector
String. CSS class name that
determines if a popup
trend does not show.

Optional.

supportsCollections
Boolean. Indicates whether
the symbol can be included
as part of collection
symbols.

Optional. Default is false. In
order for the symbol to be
driven by the collection data
sources, the symbol must use
one of the built-in data shapes.

See Data shapes.

Symbol extension

5

Parameter Value Notes

supportsDynamicSearchC
riteria Boolean. True if the

symbol supports a
dynamic search criteria for
assets.

Optional. Default is false.

Use the getDefaultConfig function to specify the collection of parameters that should be serialized
to the backend database. These are the parameters that your symbol needs to render properly. The
resulting object returned by getDefaultConfig is placed on the symbol’s scope property as config,
i.e., scope.config. Please note, by convention, all of these parameters should start with an upper-
case letter.

The main parameter from getDefaultConfig that is used by the PI Vision system is DataShape. This
parameter is used to tell the application server the information that this symbol needs to represent
the data. See Data shapes.

The datasourceBehavior property is determined by the following object, found in
\Scripts\app\common\PIVisualization.enumerations.js:

Use the datasourceBehavior property to determine the types of data sources that can be used from
the PI Vision search pane. Symbols that have this property set to None are considered static symbols

and will not be added to the symbol selector. Symbols that have this property set to Single allow a
single tag or attribute to be drag and dropped on the display to create that symbol. Symbols that have
this property set to Multiple allow multiple tags, attributes or element to be drag and dropped on

the display to create that symbol.

Below is a sample definition object from the native PI Vision value symbol:

// Determines if a symbol can have 0, 1, or n number of datasources added to it.
// This does not affect adding datasources for multistating a symbol.
// This is redundant to the "symbol model" derived objects which also define this
behavior;
// however, those classes are slated to be removed so that all symbols share the
same model
// (then this setting becomes more important).
Enums.DatasourceBehaviors = Object.freeze({
 None: 0,
 Single: 1,
 Multiple: 2
});

Symbol extension

6

Initialization

The final part of the symbol implementation is the init function. The init function is defined on the
prototype of the symbol container object created in deriveVisualizationFromBase.

symbolVis.prototype.init = function (scope, element) {

(function (PV) {
 'use strict';

 function symbolVis() { }
 PV.deriveVisualizationFromBase(symbolVis);

 var def = {
 typeName: 'value',
 displayName: PV.ResourceStrings.ValueSymbol,
 datasourceBehavior: PV.Extensibility.Enums.DatasourceBehaviors.Single,
 iconUrl: 'Images/chrome.value.svg',
 getDefaultConfig: function () {
 var config = PV.SymValueLabelOptions.getDefaultConfig({
 DataShape: 'Value',
 Height: 60,
 Fill: 'rgba(255,255,255,0)',
 Stroke: 'rgba(119,136,153,1)',
 ValueStroke: 'rgba(255,255,255,1)',
 ShowTime: true,
 IndicatorFillUp: 'white',
 IndicatorFillDown: 'white',
 IndicatorFillNeutral: 'gray',
 ShowDifferential: true,
 DifferentialType: 'percent',
 ShowIndicator: false,
 ShowValue: true,
 ShowTarget: true
 });
 return config;
 },
 loadConfig: loadConfig,
 templateUrl: 'scripts/app/editor/symbols/sym-value-template.html',
 resizerMode: 'AutoWidth',
 StateVariables: ['Fill', 'Blink'],
 inject: ['symValueLabelOptions'],
 visObjectType: symbolVis,
 configTemplateUrl: 'scripts/app/editor/symbols/sym-value-config.html',
 configTitle: PV.ResourceStrings.FormatValueOption,
 formatMap: {
 BackgroundColor: 'Fill',
 TextColor: 'Stroke',
 ValueColor: 'ValueStroke'
 },
 fontMetrics: {
 charHeight: 10,
 charMidHeight: 4,
 charWidth: 6.3
 }
 };
 PV.symbolCatalog.register(def);

 })(window.PIVisualization);

Symbol extension

7

The init function takes two parameters, scope and element, and optionally sets callback functions
on the symbol container object to drive the symbol, such as data updates and resize events.

Set inside the init function:

this.OnDataUpdate: This function is called by the PI Vision infrastructure any time a data update
occurs. It takes in a data object that contains the Value, Time, Path, Label, Units, Description, etc. The
properties on the object returned are determined by the DataShape specified in the
getDefaultConfig function.

this.OnResize: This function is called by the PI Vision infrastructure anytime the symbol is resized.
The resize function is passed the new width and height of the symbol.

this.OnConfigChange: This function is called by the PI Vision infrastructure anytime the
configuration of a symbol is updated. It takes in the new configuration and the old configuration.

this.OnDestroy: This function is called by the PI Vision infrastructure when the symbol is destroyed.

Here is a sample init function definition:

Data shapes

The getDefaultConfig function in the symbol definition can include a DataShape field, which
defines how PI Vision should retrieve data.

Value

A single data source shape that is used by the PI Vision value symbol. It is a single value at a specific
time.

(function (PV) {
 'use strict';

 function symbolVis() { }
 PV.deriveVisualizationFromBase(symbolVis);

 symbolVis.prototype.init = function (scope, element) {
 this.onDataUpdate = dataUpdate;
 this.onConfigChange = configChanged;
 this.onResize = resize;

 function dataUpdate(data) {
 // ...
 }

 function configChanged(newConfig, oldConfig) {
 // ...
 }

 function resize(width, height) {
 // ...
 }
 };

 var def = {
 // ...
 };
 PV.symbolCatalog.register(def);
})(window.PIVisualization);

Symbol extension

8

Gauge

A single data source shape that is used by the PI Vision gauge and bar symbols. This includes the
ratio of a value between a minimum and a maximum. These options are available if set as fields on
the symbol's config object:

• Start: Numeric value for zero on the scale, defaults to 0 if setting not present. No default.

• ValueScale: Return ValueScaleLabels and ValueScalePositions in the data update. Default =
true

• ValueScaleSetting: An object with these fields:

o MinType: 0 = Autorange, 1 = Use data item definition (default), 2 = Absolute

o MinValue: If MinType is 2, the numeric value of the bottom of the scale

o MaxType: 0 = Autorange, 1 = use Data item definition (default), 2 = Absolute

o MaxValue: If MaxType is 2, the numeric value of the top of the scale

Trend

A multiple data source shape that is used by the PI Vision trend symbol. These options are available
on the configuration object:

• Markers: If true, request recorded values instead of plot values if time range is short enough.

• MultipleScales: If true, each trace is scaled independently; otherwise, all traces share one scale.

• TimeScaleType: Controls labels on the time scale. 0 = Start, End and Duration; 1 = Timestamps; 2
= Relative to end; 3 = Relative to start.

• ValueScaleSetting: See the Gauge symbol configuration object above. Defaults are 0, Autorange.

The FormatType can be set independently for each trace by including them in a TraceSettings array.

Table

A multiple data-source shape that is used by the PI Vision table symbol. When using the Table shape,
you can specify these options on the configuration object:

• Columns: Array of strings. Can include 'Value', 'Trend', 'Average', 'Minimum', 'Maximum',
'StdDev', 'Range', or 'pStdDev'.

• SortColumn: Column on which to sort results.

• SortDescending: True to reverse sort order.

TimeSeries

A multiple data source shape that returns raw data values. These options are available on the
configuration object and apply to each returned data source being returned:

DataQueryMode: This specifies the type of query to perform. All valid values can be found under the
object DataQueryMode (reference scripts/common/PIVisualization.enumerations.js). The default is
ModeEvents. Here are a few of the common ones:

ModeEvents: Returns archived values.

ModeSingleton: Returns the snapshot value.

ModePlotValues: Returns data suitable for plotting over a specified number of intervals. Intervals
typically represent the pixels of the screen width.

Symbol extension

9

ModeMarkers: Returns archived values, up to the limit set on the server (typically 400 values).
Automatically falls back to PlotValues if the threshold is exceeded.

Intervals: Used in connection with a request for PlotValues, typically represents the pixels of the
screen width.

Configuring number and date formats

The configuration settings returned by the getDefaultConfig function can include the 'FormatType'
field to control the format of numbers and dates displayed in a symbol.

If this setting is not present or not null, numbers and dates are formatted using the thousands
separator, decimal separator, and date format for the primary language of the browser or the client
operating system. Dates are adjusted to the time zone of the browser, unless overridden in a URL
parameter or by a global server setting.

If set to "Database", the DisplayDigits setting in the PI Data Archive point definition is used to
control precision. If set to "Scientific," numbers are shown in exponential notation.

Any other standard or custom string supported by Microsoft C# can also be used to control
precision and leading or trailing zeroes, with special formats for currency, percentages and negative
numbers. (See Microsoft MSDN article C# Numeric Format Strings.)

If this setting is set to null, numbers are returned in invariant format without the thousands
separator, using the period as the decimal separator. Dates are returned in the ISO 8601 format
'YYYY-MM-DDThh:mm:ss.fffZ'.

Data updates

Based on the symbol's configuration and its datasources, PI Vision requests data and calls the
dataUpdate method that is defined when the symbol is initialized. The object passed to this function
depends on the symbol's DataShape.

Metadata

Some properties of a data item change infrequently, such as the data item name or its unit of
measure. To reduce the response size and improve performance, these metadata fields are returned
on the first request and only periodically afterward. The symbol update code should only process
updates for the following fields if they actually exist in the response:

• Path

• Label

• Units

• DataType (Included if configuration object has DataType set to true)

• Description (Included if configuration object has Description set to true)

Error fields

If data cannot be retrieved for a data item, the IsGood field is added to the response set to false, and
the ErrorCode and ErrorDescription fields include specifics about the error.

DataShape dataUpdate Parameter Properties, plus Metadata and Error fields

Value
Value, Time

https://msdn.microsoft.com/en-us/library/dwhawy9k(v%3Dvs.110).aspx

Symbol extension

10

DataShape dataUpdate Parameter Properties, plus Metadata and Error fields

Gauge
Value, Time

Indicator: Current value as a percentage of Max - Min, between 0 and

100 StartIndicator: The value of Start as a percentage of Max - Min, 0 to

100 ValueScaleLabels: Array of scale labels

ValueScalePositions: Array, position of labels between Min and Max, 0 to 100

Trend
StartTime, EndTime, Duration TimeScaleLabels: Array of scale labels

TimeScalePositions: Array, position of gridlines between Min and Max, 0 to

100 ValueScaleLabels: Array of scale labels

ValueScalePositions: Array, position of labels between Min and Max, 0 to
100
Traces: Array of objects with these fields:

Metadata and error fields

Value

LineSegments: Array of trace points in 100x100 coordinate space, origin lower
left

ErrorMarkers: Coordinates of data errors or where traces go out of bounds

Markers: True if points are for recorded values

ScaleMin, ScaleMax: Scale labels if multiple scales are requested

Stepped: If true, data item is stepped

Table
Rows: Array of objects with these fields: Metadata, error fields

Trend: Array of trace points in 100x100 coordinate space, origin lower left

Summary: Array of requested statistical columns

TimeSeries
Data: Array containing data objects for each individual data source associated
with the symbol. Each item can contain the fields:

Metadata, error fields

Values array

• Time

• Value

Presentation layer

The presentation layer for a symbol is basic HTML, with AngularJS for data and configuration
binding. The presentation layer is defined by the symbol's templateUrl property in the definition.

For the linear gauge, this is defined in a file called \Scripts\app\editor\symbols\ext\sym-

Symbol extension

11

lineargauge-template.html

Here is the HTML code for the linear gauge symbol:

The gauge symbol is made up two div elements: the outer div for the border and the inner div to
show the value. The majority of the work is handled by AngularJS in the inner div. This div has an
ng-style attribute, which is AngularJS's way of setting styles.

In the ng-style, we are setting the background color to be whatever is configured for the symbol's
fill, which was originally defined in the getDefaultConfig function. The height and width are also
set based on variables defined on the symbol's scope in the init or the dataUpdate function.

Custom styles

Custom CSS files can be added to provide styling for symbols. These files should be placed in the
same directory as the symbol, \Scripts\app\editor\symbols\ext\. Note that custom CSS files
placed in this directory are subject to overrides by the application styles. That is, if a custom style
selector has the same target and specificity as another style in the application, the custom style may
not be applied. CSS styles added to this directory should not be used for application theming.

When writing styles for custom symbols, it is a best practice to choose unique selectors; however,
avoid using “id” attributes as they are not meant to be duplicated.

The most convenient way to signify a specific style target is through the use of unique class
selectors:

Styles can then target this symbol without interfering with other parts of the application:

Configuration layer

The configuration layer, much like the presentation layer, is basic HTML, with AngularJS for data
binding. The configuration layer is defined by the symbol's configTemplateUrl property in the
definition.

The configuration options are shown on the symbol's context menu, via right-click or long press on
touch.

For the linear gauge, this is defined in a file called \Scripts\app\editor\symbols\ext\sym-
lineargauge-config.html. Here is the HTML code for the linear gauge symbol:

<div id="outer"
 style="'position': 'relative'; width:100%; height:100%; border:1px solid
white;">
 <div id="inner"
 ng-style="{'background':config.Fill, 'width':innerWidth,
'height':innerHeight, bottom: '-1px', left: '1px', 'position': 'absolute'}">
 </div>
</div>

<div class="my-custom-symbol">
 Symbol Content
</div>

.my-custom-symbol {
 color: blue;
}

Symbol extension

12

The title of the configuration pane will be the value set in the configOptions for title. This is also
what is shown on the context menu when launching the configuration pane.

The first div element sets the section title block in the configuration pane. Here we are using
AngularJS's binding syntax to set the text based on a string set in the symbol's configure object.

The second div contains the selection menu for choosing the orientation of the gauge symbol. This is
just a basic HTML select with options. The option text is based on a strings set in the symbol's
configure object and bound using AngularJS syntax.

The important part of this section is the ng-model attribute. This is used to bind the value set in the
configuration pane back to the symbol itself.

The next div is another section header for the fill color of the gauge symbol.

The last element, format-color-picker, is a predefined configuration control. This adds a color
picker to the configuration pane. The property attribute tells the control what property should be
bound to. In this example, it is the Fill. The config attribute tells the control where to find that
property.

Configuration options

A symbol can define the entries in a context menu that is shown when the symbol is right-clicked or
after a long press with touch. The options are defined in the symbol definitions configOptions
function. This function is called when the menu is opened, so the list of options can be dynamically
populated based on the state of the symbol or the element that was clicked.

Here is an example of how to program the context menu:

<div class="c-side-pane t-toolbar">
 <span style="color:#fff; margin-
left:15px">{{::def.configure.orientationKeyword}}
</div>

<div class="c-config-content">
 {{::def.configure.orientationKeyword}}
 <select ng-model="config.Orientation">
 <option value="Horizontal">{{::def.configure.horizontalKeyword}}</option>
 <option value="Vertical">{{::def.configure.verticalKeyword}}</option>
 </select>
</div>

<div class="c-side-pane t-toolbar">
 <span style="color:#fff; margin-
left:15px">{{::def.configure.fillKeyword}}
</div>
<format-color-picker id="fill" property="Fill" config="config"></format-color-
picker>

Symbol extension

13

The first parameter passed into this function is the context object which has fields that describe the
current symbol:

• symbol: symbol,

• config: symbol.Configuration,

• runtimeData: runtimeData,

• def: runtimeData.def

The second parameter is the DOM element that was clicked or touched to open the context menu.

The first option opens the configuration pane using the symbol's configuration template. The mode
property causes the configuration pane to stay open if another symbol on the display is selected that
supports the same mode.

The second option draws a separator line in the context menu.

The third option defines an immediate action that invokes a function defined on the symbol's
'configure' object in the definition.

Symbol formats

This section describes standardized format names, conventions and their usage for PI Vision
symbols. The purpose of a standardized symbol format is to:

• Enable a symbol to share formats with other symbols. For example, when a symbol type is
switched to another symbol type or a format paint brush feature, etc.

• Support forward compatibility, i.e., ability to open/edit displays from prior PI Vision versions
with formats that they were saved with.

PI Vision 2019 supports switching a symbol from one type to another supported type (for example,
Value to LinearGauge). Standard format options and options common to a symbol family will be
preserved when changing types. The addition of a new object called FormatOptions to the symbol
configuration object allows developers a place to define anything format related that they want to
participate in any format copying that PI Vision has now or will provide in the future.

Common format names

Here is a list of standard format names used to share formats between symbols.

configOptions: function (context, clickedElement) {
 var options = [{
 title: 'Configure My Symbol',
 mode: 'configureMySymbol'
 }, {
 'separator'
 }, {
 title: 'Hide',
 action: function (context) {
 context.def.configure.hide(context.symbol);
 }
 }];

 return options;
}

Symbol extension

14

Format Name Description

TitleColor Color of title text

TitleSize Size of title text

TitleFont Font of title text

TitleBackgroundColor Background color of title text

TitleAlignment Alignment for title text

TextColor Color of text

TextSize Size of text

TextFont Font of text

TextBackgroundColor Background color of text

TextAlignment Alignment of text

BackgroundColor Background color of symbol

LineColor Color of line/border

LineWidth Width of line/border

LineDashType Style of line/border

ValueColor Color of value shown in the symbol

FormatOptions object

To make it easy to share formats between symbols, a new object called FormatOptions, which is a
collection of formats, is created as one of the collection properties returned by
getDefaultConfig. The FormatOptions object can contain as properties either standard format
names or custom names. Any format that is part of this object is automatically shared when a
symbol is switched to another allowed type or for future format sharing features.

Sample code:

Forward compatibility

Symbol formats of displays created/saved in versions prior to PI Coresight 2016 R2 use different
format names for common formats that need to be shared between symbols. For the sake of forward
compatibility, these names are kept intact and a formatMap object is used to map them to common
format names or symbol specific names that are shared between particular symbols. This formatMap
object is defined as a property of the symbol definition object.

Note:
Starting with PI Coresight 2016 R2, all newly created symbols should use the
FormatOptions object exclusively for storing format properties; maps are only used for
existing symbols with already defined format properties.

var def = {
 getDefaultConfig: function () {
 return {
 DataShape: 'Gauge',
 Height: 200,
 Width: 200,
 FormatOptions: {
 TextColor: 'rbg(0,123,127)',
 LineWidth: 12
 }
 };
 }
};

Symbol extension

15

Sample Code:

Symbol type switching

Once created, PI Vision symbols can be switched into other supported types. For example, a Trend
symbol can be switched into a Table symbol type and vice versa, and a Value symbol can be
switched into any gauge symbol type and vice versa. When a symbol switch happens, all matching
formats from the defined formatMap and all formats in the FormatOptions object are copied from the
source type to the destination type. For example, when a Value symbol is switched to a gauge
symbol type, the ValueColor format is copied to the gauge symbol. As of this writing, Value symbol
type had no FormatOptions object defined.

SymbolFamily property

A symbol definition can define a property called symbolFamily. If the source and destination types of
switched symbols belong to the same symbolFamily (e.g., VerticalGauge and HorizontalGauge both
belong to the same symbolFamily called “gauge”), then from the source type all formats defined in
the formatMap along with all formats in the FormatOptions are copied to the destination type.

var def = {
 getDefaultConfig: function () {
 return PV.SymValueLabelOptions.getDefaultConfig({
 DataShape: 'Gauge',
 Height: 200,
 Width: 200,

 FaceAngle: 270,
 IndicatorType: 'arc',
 IndicatorWeight: 2,
 BorderWidth: 3,

 IndicatorColor: 'rgb(0, 162, 232)',
 FaceColor: 'rgba(0, 0, 0, 0)',
 BorderColor: '#fff',
 ScaleColor: '#fff',
 ValueColor: '#fff',

 ScaleLabels: 'all',
 LabelLocation: 'bottom',
 FormatOptions: {
 TitleColor: 'rbg(0,123,127)',
 TitleSize: 12
 }
 });
 },
 formatMap: {
 GaugeBackgroundColor: 'FaceColor',
 LineColor: 'BorderColor',
 LineWidth: 'BorderWidth',
 TextColor: 'ScaleColor'
 }

};

Symbol extension

16

Upgrading existing symbols

The following sections describe changes that have been made between releases of PI Coresight and PI
Vision. Unless otherwise indicated, these updates are required for all later versions as well. For example,
the changes listed in the “PI Coresight 2016 to PI Vision 2016 R2” section will also apply if upgrading from PI
Coresight 2016 to PI Vision 2019. Similarly, a change that is required when upgrading from PI Vision 2017 R2
to PI Vision 2019 would also need to be made when upgrading from PI Vision 2017 to PI Vision 2019.

PI Coresight 2016 to 2016 R2

The major change in PI Coresight 2016 R2 was the addition of the helper functions for deriving
symbols from a base symbol definition and the use of prototypical inheritance to set the init
function. To upgrade a symbol from PI Coresight 2016 to PI Vision 2016 R2, perform the following:

1. Create a function object to hold the symbol object.

2. Add an init onto the prototype of the function created above which can point to your original
init function.

3. Rather than returning anything from your init function, you now set the update, resize, etc, event
on the this pointer in your init function. These functions can point to your existing handler
functions:

4. Remove the init section from the symbol definition object.

5. Update the datasourceBehavior in the init section to point to the new location of the
enumeration, PV.Extensibility.Enums.DatasourceBehaviors.

6. Update init section to add visObjectType and point it to the function object created in step 1.

PI Coresight 2016 R2 to PI Vision 2017

The major change was the renaming of files and variables to a more generic convention. In previous
versions, global methods and properties were added to the window.Coresight namespace. In
PI Vision 2017, this has been renamed to window.PIVisualization.

In PI Coresight 2016 and 2016 R2, the following convention was used.

To upgrade a symbol to PI Vision 2017, change the argument to window.PIVisualization.

function symbolVis() { }
PV.deriveVisualizationFromBase(symbolVis);

symbolVis.prototype.init = function (scope, element) {

this.onDataUpdate = dataUpdate;
this.onConfigChange = configChanged;
this.onResize = resize;

(function (CS) {
 'use strict';
})(window.Coresight);

Symbol extension

17

For simplicity, you may keep the parameter name CS as an alias for the window.PIVisualization
argument so that existing code will continue to work with this name.

Several HTML helper directives used in configuration panes were also updated. To upgrade these
directives in your configuration panes, simple change the ‘cs’ prefix to a ‘pv’. For example, cs-color-
picker becomes pv-color-picker.

(function (PV) {
 'use strict';
})(window.PIVisualization);

Tool pane extension

18

Tool pane extension

You can extend your PI Vision installation with custom tool panes.

Layers of a PI Vision tool pane

PI Vision tool panes are broken up into two major layers:

• Implementation

• Presentation

The implementation layer is a JavaScript file that handles all of the implementation logic of the
symbol. The presentation layer is the HTML responsible for the pane's appearance. Configuration
persistence is not yet implemented.

File layout

All files for a tool pane should be saved in the same directory, the "ext" folder, under

 INSTALLATION_FOLDER\Scripts\app\editor\tools\.

If the "ext" folder is not present, it should be created.

Implementation layer

The JavaScript implementation file can be broken down into three parts: definition, initialization,
and registration.

Tool pane creation proceeds much like symbol creation, but is part of a different catalog.

The following options are available in the tool definition:

Parameter Value Notes

typeName
String. Internal unique name of
the tool.

Required

displayName
String. Name that will be shown in
the tool tab's tooltip.

Required

(function (PV) {
 'use strict';

 var def = {};
 PV.toolCatalog.register(def);

})(window.PIVisualization);

Tool pane extension

19

Parameter Value Notes

iconUrl
String. Path to the icon to be used
on the tool tab.

Required

templateUrl
String. Path to the presentation
HTML file

Optional. If omitted it will look in
the current directory for tool-

<typeName>-template.html

inject
Array of Strings. A list of
services that should be
dependency injected into the
init function.

Optional. Default is empty array.

init
Function. Function that will be
called when the symbol is
being added to a display.

Required. Takes in the scope of
the current symbol and the
element on which it is in the

Tools are singular instances appearing in the left pane of the PI Vision application, as such they are
useful for functionality that you want to have loaded at all times as a user switches displays.

They will share the same space as the built in Search and Events tool panes.

Badging

All tool extensions automatically have a property called Badge set on their scope. This can be used to
display text in a badge on the tool tab's icon. This is typically used to show a count of new items
available for viewing on an inactive tab; clicking the tab will erase the badge until the next time it is
set. To set the badge, call the raise method on badge with the text you want to display. (Badge is only
capable of showing 1-3 characters due to space constraints).

Example:

scope.Badge.raise("10");

