g s'lsif}\/orld

SAN FRANCISCO

Pl World 2020 Lab

Pl Vision Extensibility, Creating a Custom Symbol

OSilsoft, LLC
1600 Alvarado Street
San Leandro, CA 94577

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written
permission of OSlsoft, LLC.

OSilsoft, the OSlsoft logo and logotype, Managed PI, OSlsoft Advanced Services, OSlsoft Cloud Services,
OSilsoft Connected Services, OSlsoft EDS, Pl ACE, Pl Advanced Computing Engine, Pl AF SDK, PI API, PI
Asset Framework, Pl Audit Viewer, Pl Builder, Pl Cloud Connect, Pl Connectors, Pl Data Archive, Pl DataLink,
Pl DataLink Server, Pl Developers Club, Pl Integrator for Business Analytics, PI Interfaces, Pl JDBC Driver, PI
Manual Logger, PI Notifications, PI ODBC Driver, PI OLEDB Enterprise, PI OLEDB Provider, PI OPC DA
Server, Pl OPC HDA Server, Pl ProcessBook, Pl SDK, Pl Server, Pl Square, Pl System, Pl System Access, PI
Vision, PI Visualization Suite, Pl Web API, Pl WebParts, Pl Web Services, RLINK and RtReports are all
trademarks of OSlsoft, LLC.

All other trademarks or trade names used herein are the property of their respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the US Government is subject to restrictions set forth in the OSlsoft, LLC
license agreement and/or as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12-212, FAR 52.227-

19, or their successors, as applicable.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by
any means, mechanical, photocopying, recording or otherwise, without the written permission of OSlsoft, LLC.

Published: March 18, 2020

2|Page

Table of Contents

TADIE OF CONETENES ...ttt b e s bt s bt e s et et e et e e s bt e sheesaeesabesab e e bt e bt e b e e ame e eae e eateenbeenbeesbeesanesanesane 3
i 101 o o [¥ ot o] o P TP OUUT U STTO TIPSR 7
1.1, OVErVIEW OF this Labi....ci ittt et e s bt e e s bt e e bt e e s abeesabeeesabeesabeesnbeesaneeesnneas 7
00 B V1V o Y o - [o] SR 7
00 TR = Tol Y o] o = T=T N U T SRR 8
T S o Tor- Y To T I) il o L= T PO OO PSPPI UOTOPPTR 8
T - [Ao = T o VAT o I V70101 « Yo | R 8
1.6 HOW 0 USE this WOIKDOOKc..eiiiiiiiieeee bbbttt et e be e st s sare e 9
O S - 1o o T o I Lo T =TT {1 SRR 10
1.8, USEFUI RESOUICEScoiuiiiiiiieeiee ettt ettt ettt e sttt e st e e bt e e sttt e bt e e sabeesabteesabeesabeeanbeesabeeesabeesabeesanteesabeesnses 11
2. EXERCISE 1: Create and LOad SYMDOL........uii ittt et et e e et e e et e e e s abe e e e s nbee e e snbeeesenbeeeesnnseeesennsens 12
D I O o [T ot 4 AV USRS 12

D A - 7= Vol €1 o TV oo USRS 12
2.3, OBIJECTIVE: Create IMplementation ...ttt ettt e e s st e e s s ate e e e sbtae e s sataeeesntaeessntneassans 12

R =] o PP 12
HINES bbbt s a e s a e s e e b e s b e s aa e sabe e s 13

24 (027 on DLV N Ol T LI T o 0] o] 1 o PPN 13

R =] o PP 13
HINES ettt e e e st e e e a e e e s e e e e s e b e e s e b e e e s e r e s e n e s e e ne s e res 13

2.5, OBIJECTIVE: LOAA SYMDOL ... ceiiiiiiiiee ettt ettt ettt e e e ettt e e e et e e e e ebteeeeeabteeeeenstseeseastasaeastasasesseaeesstasaesnssasaeanns 14
(=] o TP PP P PP PP PP PPPPPPPPPPPPPPPPPRE 14

P2 ST Y] [V o T3 O TP USRS PP VRUSOPPOT 15
(@1g Y I Tl o1 1T 01T ol = o Lo o S UPURS 15

(@1 TN I =T 0 Y] - 1 o PR 16

(o= To I3 0'0] o Yo | USSR 16

3. EXERCISE 2: Update SYMDBOl With Data........cccoccuiiiiiiiiii ettt ettt tee e e tte e e s et e e e e e bt e e e s e abte e e e e nbteeeesnnaeeeennnees 18
I I @ 1 o] =T ot 1 V7S 18
K = 7 ol 4= o 10 o Yo F USRS 18
3.3, OBIJECTIVE: ChoOSE HOW tO RETIHEVE DAta......eeeiiiierieieiiieiieeeiie ettt ettt et e sttt e e sbee e sab e e sabeesneeesaraeenneeas 19

KL L=] o TP PPPPPPPPPPPPRE 19
HINES Lottt a e s b et E e s e b et e s s e e s s e e e s e e e e s s aara s 19
3.4, OBJECTIVE: Handle Data UPdates ...ueiiicuiieiiiiiiieieiiie st te e et ee s sttt e e s site e e ssatae e e sseaeesssssaeaessnsseeesnnsseessnnsseeesnnssenen 19
(=] o PP PP PP PP PP P PP PPPPPPPPPPPPPPPPPPPRE 19
HINES ettt e et e e s et e e s e e e e s e e e e s s e s e e e e s e e r e s e ares 19
3.5 OBJECTIVE: ROTAtE AITOWeiiiiiiiieiiitiee ettt sttt ettt e e s et e e s st e e e s s mr et e s sameeeessneeeessananeessans 19
L] o PP PP PP P PP PP PPPPPPPPPPPPPPPPPRE 19
HINES ettt et e e a e e e s bt e e s e e e s e e e s e r e s e e e e s e e e e s s res 20
3.6, SOLUTION et e aeaeaaaeaaaeeeaaaeaaaeaeaaens 21
ChO0SE HOW TO RETIHEVE DAta....ciiiuiiiiiiiiiiieeite ettt ettt ettt ettt e sttt e st e s bt e s bte e sabeeebbeessbeesabeeesabeesabteesnseesabeeesaseenas 21
HANAIE Data UPAAteS ..c.ueeiiiieciiiie et ee ettt e e ettt e e ettt e e ettt e e e e tbtee e e ataeeeeassseeeeanssaeesanssaseeansseaeeansseseeassesesensseneeennseaeeennsens 21
ROTAEE AFTOW ...ttt et e e st e e s bt e e s e b et e e s e ba e e e s e s bt e e s e s be e e s e mbenesenrenesenrenessnrens 22

4. EXERCISE 3: Show Value, Timestamp, Label, and UNitSc..oiiiiiiii ittt et e et e e e are e e e saraee e 24
O I ©] o =Y o 4 V7T SRR 24
o - 1ol <= {4'e TV o o F PP PPR 24
4.3. OBIJECTIVE: Get Value and TimMESTamI.......ceiccuiieeeiiiieeeciiee e e citee e eette e e s ste e e eetteeeeeabeeeeesaseeesensseeeeensseseeennseneeennsens 24

(=] o T PP P PP P PP PP PP PPPPPPPPPPPPPPPPPRE 24
4.4, OBJECTIVE: Get Label @nd UNITS ...ccceiiiiiiiiieeieeieenee sttt sttt ettt st st st e be e esme e st e eneeneens 25
KL L=] o TP P PP PP PP PP PPPPPPPPPPPPPPPPPRS 25
HINES ettt e e e e e e e e e e e e e R e e e e R e et e e e e et e e R e et e e e R R e et e e R re e e e e R re e e e e r e e e e e e neeeeares 25
4.5 OBJECTIVE: Display the Value, Timestamp, Label, and UNitS........ccoovcviiiiiiiiiiicciee e 25

4|Page

[L TP PPPST 25
A6, SOLUTION ...ttt ettt ettt sttt b e bt e s bt e s ae e st s bt e bt e b e e bt e she e e ae e e at e et e e sbeesbeesaeesateeabe e beeabeeameesneeenneenteens 26
O Y | LTI o Vo B T g V=T - o o TR USSP 26
GO LAD@I @NA UNIES...eiiiiiiiieeeee ettt ettt e s e st e s bt e e s bt e e s abeesabe e s b eeesabeeesbeeesabeesaseeesabeeeabeeeanseesabeeesnneena 26
Display Value, Timestamp, Labe, and UNitS.......ciiiiiiiiiiiiiiieciiieee ettt sree st e st e e s sbee e s s sabe e e s s sabeeessnreeessnanes 27
EXERCISE 4: Create @ ConfigUration PANEc...eiiiciiiiiiiiiee ettt ettt e sttt e e s tte e e e et ae e s e satae e s enbaee s enabaeesennsaeesensaeeeensens 30
LT R @ 1] =T ot 1 V7SR 30
LI R = 7 ol 4= o 10 o Yo F USSP 30
5.3. OBIJECTIVE: Add User Options to show Label, Value and Timestamp........cccovvveeeeeeeiiiciiiieeeee e e 30
5.4. OBJECTIVE: Conditionally Show Label, Value, and Timestampcoeecviiieeiiiii et e e e 30
5.5. OBJECTIVE: Create the Config Pane TeMPIAteueieiiiiii ettt et e et e e st e e e e eane e e e sennreee s 31
(=] o PP PP P PP P P PP PP PP PPPPPPPPPPPPPPPRE 31
HINES ettt e e bt e a et e s e e e s e e e s e r e s e r e s e e r e s s ares 31
5.6 OBJECTIVE: Expose the Configuration Pane through Context MENU.........ccccvvieeeeiiiiiiiiiieeeee et 31
[L0 TP PP PP 31
5.7, SOLUTION ...ttt ettt ettt e e e e bttt et e e e e e e s e e eeeeee e e e anabe e teeeee e e sebeeeeeeee e e nnnab et e eaeeeesanssbeeeeeeesesannnenenens 32
Add User Options to Show Label, Value, and TIMESTAmMPccccciiieiiiiiie ettt e et e e e e eate e e e eereae e e esaraeaeeans 32
Conditionally Show Label, Value, and TiMestamp......ccocciiiei ittt ettt e s e e e ee e e s sbe e e s s sbaee s s srreeeesanees 32
Create the Config Pane TemMPIate Fil.....c.uii it e s e e e et ee e e s eabe e e e s sabeee e esartaeeenarees 33
Expose the Configuration Pane through a Context-Menu OPtioN.........ccueeeiiiiieiecciiee e e 34
EXERCISE 5: Add Styles to Symbol and Configuration Pane@...........cccueiiicuiiiiiciiiee ettt e etee e et e et e e e 35
0 T O 1 o] =T ot 4 V7SRRI 35
(o = 7= Vol 4= o1 o Yo H RSP 35
6.3. OBJECTIVE: Add Class Attributes t0 El@MENTS.......coiiiiiiiiiiiee ettt 35
6.4. OBJECTIVE: Create the CSS File ...ttt ettt sttt e st e s e e sar e e smn e e sare e e meeesareeeneeas 35
6.5. OBJECTIVE: Configure Styles through the CSS Fil@ccuiiiiiiiiiecee ettt e seae e 35

SOLUTION. ...ttt ettt ettt ettt e ettt e e et e e s s bttt e s s s e e e e s eas e e e e s e s e et e s e s e et e s aan s et e e e s e et e e s anne e e e easre e e e s s saeeesmneeeesmnneeesannneeesannneness 36

Add Class AtEribULES t0 EIEMENTS. ..ottt ettt et sae e st st st e b e s b e e s seesmeeemeeeneeeneens 36

CrEATE ThE €SS FIlE ..ttt sttt ettt e s bt e s bt e s ab e et e e bt e bt e bt e sme e emeeeateenbeenbeesbeesanesanenane 37

Configure Styles throUgh the €SS Fill ...ttt e e e et e e e st e e e st e e s s sabeee e e sabeeeessabeeessnnsees 37
SAVE The Date! ... bbb bbbt Error! Bookmark not defined.

6|Page

1. Introduction

1.1. Overview of this Lab

Are the PI Vision native symbols not meeting all your users’ needs? Do you have an industry specific use
case for data visualization that you are not able to completely implement using the built-in Pl Vision
symbols? Maybe you have existing code or a web API that you would like to use within PI Vision?

You're in the right lab!

Pl Vision Extensibility is a powerful model that enables you to write custom symbols and tool panes for
use in Pl Vision displays, including unique or industry-specific ways of visualizing Pl data.

Today we will use the Pl Vision extensibility framework to create a custom arrow symbol that rotates
based on the value of a data item. This symbol was inspired by a customer use-case where there was a
need to represent wind direction intuitively, and easily overlay that information on top of a map.

O Pl Vision New Drspiay E] PcHoOUssenst | @
@ Assets . < m ®v

w B = i = 0 3 4 Format Wind Arrow v

=] Wind Direction

Throughout our exercises, we will learn how to register a symbol, hook into the built-in symbol
events, update the symbol's view, and create a configuration pane.

While you're going through these exercises try to think about the needs of your users and how you
could leverage this technology to address those needs.

1.2. Workspace

Each student’s environment will consist of a Pl Vision 2019 application server hosted on Microsoft IIS.
The PI Vision application’s SQL database will be hosted in a Microsoft SQL Express Server on the same
node. Each student’s PI Vision application will connect and retrieve data from the same Pl Data
Archive Server and Pl AF Server, which are hosted on a different node.

7|Page

On each student’s node, is a folder, C:\Class Files\, where one can find the solutions for each exercise, a
copy of the Lab PowerPoint presentation, Lab Workbook, Pl Vision Extensibility Guide, and any assets
to be used within the exercises, such as images, SVGs, and code snippets.

1.3. Technologies Used
Client-side Pl Vision is built on ASP.NET MVC, HTML, CSS, JavaScript, AngularlS, and jQuery.

PI Vision symbols consist of JavaScript, HTML, and CSS. An understanding of Angular)S and jQuery is
helpful, but not necessary.

1.4. Location of Files

The native Pl Vision symbols can be found in

the %PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ folder. Native Pl Vision symbols
include the Trend, Value, Table, Vertical Gauge, Horizontal Gauge, Radial Gauge, XY Plot,
and Asset Comparison Table symbols. All native symbols are built on our extensibility model.

Custom symbols should be placed inside of

the %PIHOME64%\PIVision\Scripts\app\editor\symbols\ext\ folder. The Pl Vision Web Application
Server will look for any JavaScript files inside of this folder and inject references, in the form of a script
tag <script src="/PIVision/Script/app/editor/symbols/ext/filname.js></script>, to these files inside of
the index.html, after any other native script tags. This code will get loaded and run when the user first
navigates to the Pl Vision Web Application in the browser. Similarly, any CSS files placed inside of this
folder will also be injected into the index.html file in the form of a stylesheet link

tag <link href="/PIVision/Scripts/app/editor/symbols/ext/filename.css" rel="stylesheet"/>, before
any native stylesheet link tags.

To keep Pl Vision from loading and executing code or CSS files on startup through the index.html file,
you can place them inside of a subfolder within

the %PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\ folder. This may be useful for storing
third party libraries that don't necessarily need to be loaded when the PI Vision Web Application first
loads in the browser.

Additional subfolders can be created within

the %PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\ folder, and files within those folders will
be treated as static public files that can be accessed from the browser.

1.5. Parts of a Pl Vision Symbol

PI Vision symbols have three major layers, the implementation, presentation, and configuration.

Implementation

The implementation layer consists of a JavaScript file with three parts: definition, registration, and
initialization. It is convention to name this file after the following pattern: sym-<symbol name>.js. The

8|Page

code within this file is responsible for implementing a symbol definition object, a symbol initialization
function, and registering the symbol with the Pl Vision client/browser side global symbol catalog object.

This JavaScript file should be placed inside of

the %PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\ folder, and not within a subfolder of
this folder.

Presentation

The presentation layer consists of an HTML template file and, optionally, CSS embedded within the
HTML or in a separate file. The symbol template is responsible for the symbol's appearance, and is
the main view that the user will interact with the symbol through. The template has access to the
symbol object's members through AngularlS directives.

It is convention for this file be named after the following pattern: sym-<symbol name>-
template.html. If the template file is named using the standard convention and placed inside of

the %PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\ folder, then the template URL does not
need to be specified in the symbol definition, otherwise it should be specified.

Any CSS files placed inside of the %PIHOME64%\PIVision\Scripts\app\editor\symbols\ext\ folder will
be loaded automatically by the browser.

Configuration

The configuration layer consists of an HTML template file, and optionally, CSS embedded within the
HTML or in a separate file. The configuration template is responsible for the appearance of the
symbol's configuration menu, accessed through the symbol's context menu. The configuration menu is
the user's main way of changing the symbol's appearance and behavior.

It is convention for this file be named after the following pattern: sym-<symbol name>-config.html. If
the configuration template file is named using the standard convention and placed inside of
the %PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\ folder, then the configuration template
URL does not need to be specified in the symbol definition, otherwise it should be specified.

Any CSS files placed inside of the %PIHOME64%\PIVision\Scripts\app\editor\symbols\ext\ folder will
be loaded automatically by the browser.

1.6. How to use this Workbook

The following sections of this workbook are split up into exercises that should be completed in order.
Each exercise builds on top of the previous one, with the goal of completing the custom arrow symbol
by the last exercise.

Each exercise is made up of objectives that need to be completed in order to move on to the next
exercise. You are encouraged to use the Pl Vision Extensibility Guide to complete the objectives for each
exercise on your own. However, each objective has its own subsection that presents the recommended
steps to complete the objective, along with hints for when you feel stuck.

9|Page

At the end of each exercise section you can find a sample solution for each of the objectives.

1.7. Before You Begin

Before you begin development, OSlsoft recommends that you place PI Vision into debug mode. To
do so, edit the web.config file in your Pl Vision installation folder to change the compilation tag,
under system.web, from:

debug="false" targetFramework="4.6" />

debug="true" targetFramework="4.6" />

Debug mode disables the Pl Vision bundling and minification system; this makes debugging
your application easier.

Note that in debug mode, Pl Vision does not process minified JavaScript files.

Debug mode can have a negative impact in Pl Vision’s performance and should be disabled when not
being used.

You should also open the Pl Vision page in the browser, https://localhost/PIVision/. This may be slow
the first time due to the cold start. Once the browser is open to the Pl Vison page, we should open the
browser developer tools (F12) and check “Disable cache” in the “Network” tab; this will ensure that
we’re always requesting the latest files from the server, which is useful when you’re constantly
making changes to those files.

10| Page

1.8. Useful Resources
PI Vision Extensibility Guide

https://customers.osisoft.com/s/productcontent?id=a7R11000000XybxUAC

Pl Visualization Development Forum

https://pisquare.osisoft.com/community/developers-club/pi-visualization-development

Angular)s

https://angularjs.org/

JjQuery
https://jquery.com/

11| Page

2. EXERCISE 1: Create and Load Symbol

2.1. Objectives

* Create the symbol implementation file with the minimum required to be able to load the symbol
in the Pl Vision display editor.

* Create the symbol template file with the minimum required to be able display an arrow when an
instance of the symbol is loaded in the PI Vision display editor.

* Test the newly created symbol by using it in the Pl Vision display editor.

2.2. Background

The implementation file is a JavaScript file that will get executed on startup. This file is responsible for
creating the base symbol function object, the symbol function object’s initialization method, the
symbol definition object, and for registering the symbol with the symbol catalog using the definition
object. Review the P! Vision Extensibility Guide pages 1 through 7 for examples of the implementation
layer, and definition object parameters; not all parameters are required.

The symbol definition object also determines the template HTML file (presentation layer) that will be
used for the symbol. The template HTML file should not include a HEAD, BODY, or FOOTER element,
it should be an HTML fragment. PI Vision will inject this HTML fragment inside of a SYMBOL-HOST-DIV
element.

2.3. OBIJECTIVE: Create Implementation

Use the Pl Vision Extensibility Guide to create the symbol's implementation file.

Steps

1. Create the JavaScript implementation file within the symbol extensibility folder.

2. Implement a JavaScript IIFE (Immediately Invoked Function Expression) that takes
the window.PIVisualization object as an argument.

3. Instantiate the base symbol object.

4. Create the symbol definition object. You should only have to define the properties required
to load and create the symbol in the editor window.

5. Define the symbol initialization function. The implementation of this function is not required for
this step, it just needs to be defined.

12| Page

Hints

* The ‘use strict’ JavaScript directive is recommended to avoid common errors.

* Use the provided sym-arrow.png image for the symbol’s icon in the symbol definition object.

* The datasourceBehavior symbol definition object property is optional, and if not specified will
default to window.PIVisualization.Extensibility.Enums.DatasourceBehaviors.None. However, if
this option is used, the symbol will be treated as a static symbol and will not be added to the
symbol selector. The window.PIVisualization.Extensibility.Enums.DatasourceBehaviors.Single
option should be used for this symbol.

* The getDefaultConfig symbol definition object method is optional and should return the default
configuration object. However, we should define and implement this method so that the return
object includes the Height and Width properties so that the symbol's presentation container
div HTML element's height and width can be defined. These properties should be of Number
type and correspond to pixels. If not defined the height and width will be equivalent to zero.

* The values of the properties of the object returned by the getDefaultConfig method should not
be changed within the implementation code. These property values should only be updated by
the configuration layer file using the AngularJS ngModel directive to avoid issues.

2.4. OBIJECTIVE: Create Template

Use the Pl Vision Extensibility Guide to create the symbol's template file.

Steps

1. Create the HTML template file within the Pl Vision symbol extensibility folder.
2. Create an SVG element with a PATH element that draws an arrow in the browser.

Hints

You can use the following to create your arrow, this code snippet is also available in the class files folder:

13| Page

width="95%" height="95%"
viewBox="0 @ 70 70" xmlns="http
style="fill:green" d="m27.5,
34.9423917.5,
-23.942417.5,

010,
24.057611-7.5,
010,
-24.057611-3.75,
ez" />

2.5. OBJECTIVE: Load Symbol

Test the newly created symbol.

Steps
1. Navigate to the PI Vision application the browser and create a new display.
2. Make sure that the new symbol’s icon is present in the symbol selector and select it.
3. Dragand drop an attribute into the editor window to create an instance of the symbol.
4. Open the browser’s developer console to make sure there aren’t any errors loading the symbol.

14| Page

2.6. Solution

Create Implementation

1. Create the JavaScript file using the correct naming convention in the following

location: %PIHOME64%\PIVision\Scripts\app\editor\symbols\ext\sym-arrow.js

2. Define the immediately invoked function expression (IIFE) that takes the window.PIVisualization
(PV) object as an argument. PV is created by Pl Vision in the global namespace in the browser
and is referenced and modified by each of the Pl Vision JavaScript modules. The IIFE will be run
as soon as the JavaScript file is loaded by the browser when the PI Vision page is opened.

(function (PV) {

'use strict';

}) (window.PIVisualization);

3. Define the visualization object as a function, and then use the PV.deriveVisualizationFromBase()
method to extend the visualization object with the SymbolBase prototype to add some default
symbol behavior to the object that is used internally by the framework.

function O {1}
PV. (symbolVis);

4. Define the symbol definition object with the two minimum required properties: typeName and
visObjectType. The visObjectType property value should be the symbol object we created in the
previous step. We don’t need to specify the templateUrl property because we’re using the
default naming convention. In addition to the minimum required properties we should add the
iconUrl and use single for the datasourceBehavior since our symbol will be using a single data
source. We'll also define the getDefaultConfig method and return an object with the Height and
Width properties, otherwise the symbol will not have a height or width.

typeName: 'Arrow’,
datasourceBehavior: PV. .Enums. .Single,
iconUrl: 'scripts/app/editor/symbols/ext/icons/sym-arrow.png',
: function () {
return {

Height: 80,
Width: 8@
}

}s
visObjectType: symbolVis

15| Page

5. Define the symbol’s prototype initialization method. This method is called whenever a new
symbol instance is dropped in the display editor. The implementation of this method is not
required for a new symbol instance to be created, but the method does need to be defined or
else an error will be thrown when PI Vision tries to call it.

symbolVis. . = function (scope, elem) { }

6. The final step is to register the symbol with the PV.symbolCatalog.register() method. We use
the symbol’s definition object, which contains everything we’ve defined in the implementation
file, to register the symbol. This should be the last line of code to be executed when this file
loads and the IIFE is invoked.

PV.symbolCatalog. (definition);

Create Template

1. Create the HTML template file using the correct naming convention in the following location:

%PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\sym-arrow-template.html

2. Create the SVG and PATH element to draw the arrow on the display.

width="95%" height="95%"
viewBox="0 @ 70 70" xmlns="http:
d="m27.5,
34.9423917.5,
-23.942417.5,
23.94241-3.75,

ole,
24.057611-7.5,
ole,
-24.057611-3.75,

Load Symbol

The arrow symbol should be available in the symbol selector, and you should be to select it and drag and

drop an attribute to the editor to create a new instance of the symbol.

16 |Page

O PIAVision

@ Assets Display: Click Save I

17 |Page

3. EXERCISE 2: Update Symbol with Data

3.1. Objectives

* Specify how Pl Vision should retrieve data for this symbol.
* Create a data update event listener for this symbol.
* Rotate the arrow based on the data update.

3.2. Background

The symbol initialization function is called whenever a new symbol object is created, with the context of
the "this" variable being the new symbol object that was created and now being initialized. This function
can be used to set up event listeners, scope properties, and DOM manipulation.

The element object passed to the symbol.prototype.init(scope, element) method is a jQuery object
wrapper for the main html element (SYMBOL-HOST-DIV) that contains this instance of the symbol.

Data updates should be handled through a callback function defined through the symbol initialization
method. The following are the callback functions that can be used:

* this.onDataUpdate(data)
o data object properties determined by the data shape
o called any time the symbol gets a data update
* this.onResize(width, height)
o width and height are the new dimensions in pixels
o called when the symbol is resized
* this.onConfigChange(newConfig, oldConfig)
o newConfig and oldConfig are objects with the symbol configuration before and after the
change
o called when the symbol configuration is updated
* this.onDestroy()
o called when the symbol instance is deleted from the editor
* this.onDataSourceChange(newSource, oldSource)
o newSource and oldSource are arrays of the symbol data sources before and after
the change
o called when a data source is added or removed from the symbol

More information about the symbol initialization function and an example can be found on pages
6 through 7 of the Pl Vision Extensibility Guide.

Given a time range and a data source(s), Pl Vision can retrieve data in a few different forms, referred to
as data shapes in the documentation. Pages 7 through 8 of the PI Vision Extensibility Guide cover the
different data shapes available for Pl Vision symbols. The data shape should be specified in the
getDefaultConfig function in the symbol definition.

18| Page

Information about the data object passed to the symbol’s onDataUpdate(data) callback can be found in
pages 9 through 10 of the PI Vision Extensibility Guide.

3.3. OBIJECTIVE: Choose How to Retrieve Data

Use the PI Vision Extensibility Guide to choose the best data shape for this symbol and add it to the
symbol definition.

Steps

1. Decide which Pl Vision data shape translates best to the state of the arrow’s rotation or angle.
2. Modify the symbol definition object to make sure that the chosen data shape is used.

Hints

* The arrows rotation should be between 0 and 360 degrees.

3.4. OBIJECTIVE: Handle Data Updates

Use the PI Vision Extensibility guide to handle the data updates to the symbol and transform the data
into degrees.

Steps

1. Define the appropriate callback function within the symbol initialization function.
2. Convert the data into degrees (0 — 360) which will be used to rotate the symbol.

* Try outputting the data to the console in the browser to make sure it is what you expect.
* You should handle the case where no data is retrieved, and the argument passed is undefined.

3.5. OBJECTIVE: Rotate Arrow

Steps

1. Get areference to the arrow HTML element.
2. Rotate the arrow based on the data update.

19| Page

Hints

* The second argument passed to the symbol initialization function is a jQuery object wrapper for
an HTML element.
* You can use the rotate transform function of the element to rotate it.

20| Page

3.6. SOLUTION

Choose How to Retrieve Data

Since our arrow can have an angle between 0 and 360 degrees, we need to choose a data shape that will
make it easy to transform the data into this value range. The data shape that makes the most sense for
this application is the Gauge data shape. With this data shape, data object passed to the
onDataUpdate(data) callback function will contain the following fields: Value, Time, and Indicator. The
Indicator property’s value is the current value as a percentage of Max — Min, between 0 and 100, which
can easily be transformed to a value between 0 and 360 by the following formula:

degrees = 360 * data.Indicator / 100

In order let Pl Vision know which data shape it should use for this symbol we need to specify it in the
symbol’s definition object’s getDefaultConfig method.

Additionally, as part of the Gauge data shape config object properties, we won’t be using the
ValueScaleLabels and ValueScalePositions, so we’ll set the ValueScale property to false. In our case,
since we're expecting the value coming from the data source to be between 0 and 360, we can also
specify this range using the ValueScaleSettings property.

var definition = {

: function() {

return {

DataShape: 'Gauge',

ValueScale: false,

ValueScaleSettings: {
MinType: 2,
MinValue: 0,
MaxType: 2,
MaxValue: 360

Handle Data Updates

In order to do anything with the data retrieved with the data shape we specified we have to handle
it within a callback function. This callback function should be assigned within the symbol’s
initialization function to the this.onDataUpdate field.

This function will have the data object as a parameter and will be called every time the Pl Vision
application gets a response to its DiffForData request to the Pl Vision server, normally every 5 seconds.

21| Page

One edge case that we should consider and handle is when the data object passed as an argument
is undefined, which can occur the first time an instance of the symbol is created.

symbolVis. . = function (scope, elem) {

.onDataUpdate = onDataUpdate;

function (newData) {
if (!newData) {

return;

var degrees = 360 * newData.Indicator / 100;

}

Rotate Arrow

Once we have the data how we need it, we then need to update the HTML to rotate the arrow. In
order to easily find the arrow within the DOM we should give it a class in the HTML file.

width="95%" height="95%"
viewBox="0 © 70 70"
xmlns="http://www.w3.0rg/2000/svg"> < d="m27.5,
34.9423917.5,
-23.942417.5,
23.94241-3.75,
0l0,
24.057611-7.5,
ele,
-24.057611-3.75,
0z"

class="svg-arrow" />
</ >

We can then use the second argument passed to the symbol’s initialization function when the symbol
is initialized to get a reference to the SVG PATH element. This argument is a jQuery object wrapper for
an HTML element reference object. Once we have the reference, we can then apply a rotation
transformation to the element.

22| Page

symbolVis. . = function (scope, elem) {

.onDataUpdate = onDataUpdate;

function (newData) {
if (!newData) {

}

var degrees = 360 * newData.Indicator / 100;

var svgArrow = elem. ('.svg-arrow')[0];
SVEArrow. ('transform', 'rotate(' + degrees + ' 35 35)');

}

23| Page

4. EXERCISE 3: Show Value, Timestamp, Label, and Units

4.1. Objectives

* Store the latest value and timestamp data updates in the symbol’s scope.
* Store the latest label and units in the symbol’s scope.
* Update the symbol template to display the value, timestamp, label, and units.

4.2. Background

The symbol’s scope, which is the first argument passed to the symbol’s initialization function can be

thought of as the symbol instance’s namespace. The scope object consists of several built-in properties,
such as config, def, position, and more. However, you are also free to define your own properties on the

scope object from within the initialization function and use those properties within the event handler
callback functions, as well as your symbol template.

The scope object members are available inside of the symbol’s template through Angularl)S directives.

Any scope members can be accessed through the template as if they were part of the global namespace.

It is common practice to get the value, timestamp, label, and units for a symbol from the onDataUpdate

callback function and update the scope properties accordingly so that they can then be displayed
through the symbol template.

One thing to notice is that not every update will include the label and units as part of the data object

argument passed to the callback function. By default, the label and units only show up when the symbol

is first created, updated, or about every 13t data update (a data update occurs about once every 5
seconds).

It is a good idea to use the console.log() function to output the scope and data objects to the
browser console to look through all of the object properties available, and to see how the data
object may change over time.

4.3. OBIJECTIVE: Get Value and Timestamp

Retrieve the value and timestamp through the onDataUpdate function and store the results in the
scope object.

Steps

1. Define the Value and Timestamp scope properties within the initialization function.
2. Update the Value and Timestamp scope properties with the data updates.

24| Page

4.4,

OBJECTIVE: Get Label and Units

Retrieve the label and units through the onDataUpdate function and store the results in the scope

object.

Steps

Hints

4.5.

Define the Label and Units scope properties within the initialization function.
Update the Label and Units scope properties with the data updates.

Not every data update will contain the Label and Units properties; make sure to handle this
properly.

OBJECTIVE: Display the Value, Timestamp, Label, and Units

Edit the symbol template to be able to display the Value, Timestamp, Label, and Units for the
data source associated with this symbol.

Steps

Hints

Use HTML DIV and SPAN elements inside of the symbol template to create stubs to show the
Label, Value, Units, and Timestamp.

Use Angular]S markup within the symbol template to bind the Label, Value, Units, and
Timestamp scope properties values to the template.

Use the Angularl)S ng-style directive to change the text colors to something that is easier to see
within the PI Vision display editor.

Properties within the implementation’s initialization scope object parameter are available
within the template by way of Angular)JS markup and directives.

Data binding can be achieved by using the double curly brace notation: {{ }}.

Specify the LabelColor and ValueColor as config object properties.

25| Page

4.6. SOLUTION

Get Value and Timestamp

First, we'll define the scope.Value and scope.Timestamp properties within the
symbolVis.prototype.init function, at the start. We do this to make sure that any properties we plan on
using anywhere else in the symbol are defined before they’re referenced, and to help us keep track of
the properties we’re adding to the scope object within the initialization function.

{ scope.Value =
scope.Timestamp =

Next, update the scope.Value and scope.Timestamp properties any time we get a new value and
timestamp through the onDataUpdate callback function. The onDataUpdate callback is passed the
newData object as an argument, which contains the newData.Value and newData.Timestamp
properties. Assign the new values from the newData object to the value and timestamp properties. This
is also a good place in the code to use console.log(newData) to see what properties are available in the
newData object.

(newData) {

scope.Value = newData.Value;

scope.Timestamp = newData.Time;

Get Label and Units

Again, we’ll define the scope.Label and scope.Units properties within the symbolVis.prototype.init
function.

26| Page

symbolVis. . = function (scope, elem)
{ scope.Value =

scope.Timestamp

scope.Label
scope.Units

However, getting the label and units from the newData object passed to the onDataUpdate callback
function will be a bit trickier. Since the newData.Label and newData.Units properties are not always
defined on every data update, we should check before assigning their values to the scope.Label and
scope.Units properties, otherwise, we’ll cycle between our labels and units having valid values to the
values being undefined.

function (newData) {

if (newData.lLabel !== undefined) {
scope.Label = newData.lLabel;
if (newData.Units !== undefined) {
scope.Units = newData.Units;

} else {
scope.Units

Display Value, Timestamp, Labe, and Units

First, we'll edit the HTML in the template to include stubs for Label, Value, Units, and Timestamp. We're
using a non-breaking space () to make sure that no matter the width of the symbol, the value and
units stay in the same line, but are still separated by a space.

27| Page

div
div
span span
div
div
span span
div
div
span span
div
div

Then we can use AngularlS databinding markup, {{<scope-property-name>}}, within the HTML to bind
the scope.Label, scope.Value, scope.Units, and scope.Timestamp property values to the HTML that will
be presented to the user. The template has access to properties inside of the scope object of the
symbol.

>{{Label}}</

The default text color for the SPAN element is black, which will be difficult to see against the PI Vision
editor’s default background color. We should change the text color so that they contrast more with the
background. Even though we could hardcode the colors within the template file, it is better practice to
specify the colors we want to use within the implementation’s default config object for reusability and
manageability later.

var definition

: function () {
return {

LabelColor: 'grey’,
ValueColor: ‘white’,

28| Page

Now we can use these config object properties from our template along with the AngularlS ng-style
directive to style the SPAN elements’ text color with easier to read colors. We'll also specify the parent
DIV element’s width with the scope.positition.width property, which is built-in and contains the current
width of the parent symbol element.

ng-style="{width: position.width}">

ng-style="{color:config.LabelColor}">{{Label}}</

ng-style="{color:config.ValueColor}">{{Value}} {{Units}}</

< ng-
style="{color:config.LabelColor}">{{Timestamp}}</ > </

</ >

29| Page

5. EXERCISE 4: Create a Configuration Pane

5.1. Objectives

* Add user options for showing the label, value, and timestamp properties

* Conditionally show the label, value, and timestamp based on the user options
* Create the configuration pane to allow the user to toggle the options

* Expose the configuration pane through the symbol’s context menu

5.2. Background

Sometimes we want to give the user options for configuring the way the symbol looks or behaves; we
can do this by adding a configuration pane for the symbol. The configuration pane can be opened
through the symbol’s right-click context menu. The configOptions property in the symbol definition
object can be used to create a symbol context menu shortcut to open the configuration pane. You can
find additional information and examples of this symbol definition property in pages 12 and 13 of the PI
Vision Extensibility Guide.

We can expose the user configuration options through the configuration pane and then handle those
changes accordingly. These user configuration options should have default values as part of the symbol
definition. These default options will help us render the symbol correctly when it first loads. Changes to
the config options will also be persisted to the backend database when the symbol is saved.

The AngularlS ngShow directive can make it easy to show or hide elements in our symbol template
based on scope property values. And the ngModel AngularlS directive can make it easy to bind the value
of an HTML element to a scope property value.

5.3. OBIJECTIVE: Add User Options to show Label, Value and Timestamp

Add Boolean type properties, representing the user options, to the default config return object in
the symbol definition for showing the symbol’s label, value, and timestamp.

5.4. OBIJECTIVE: Conditionally Show Label, Value, and Timestamp

In the symbol’s HTML template, use AngularlS directives to show or hide the HTML elements for
the label, value, and timestamp based on the user option values.

30| Page

5.5. OBIJECTIVE: Create the Config Pane Template

For the user to be able to change the user options, they’ll need some sort of user interface. The
configuration pane template provides this Ul to the user and allows you to use AngularlS directives to
bind the HTML element value to the user option values.

Steps

1. Create the config HTML template file within the Pl Vision symbol extensibility folder.

2. Add INPUT elements to the HTML template file to toggle the Label, Timestamp, and Value.

3. Use AngularlS directives to bind the value of the INPUT elements to the value of the user
options.
Hints

* Like the symbol’s HTML template file, if we follow the naming convention, we do not need to
specify the configTemplateUr! property in the symbol definition.

* You can use INPUT elements of checkbox type.
* Use the Angular]S ngModel directive for data binding.

5.6. OBIJECTIVE: Expose the Configuration Pane through Context Menu

Use the configOptions symbol definition member to specify a context menu option for the symbol
to open the configuration pane.

Hints

* The return object should contain a single option specifying the title, and mode, with no
custom action.

31| Page

5.7. SOLUTION

Add User Options to Show Label, Value, and Timestamp

We'll want to define the user options in the symbol definition’s getDefaultConfig method by including
them as properties in the return object of the function. These properties will be of Boolean type, since
they’ll either be set to show or hide the Label, Value, and Timestamp.

var definition = {

: function() {

return {

ShowlLabel: false,
ShowValue: true,
ShowTimestamp: false

Conditionally Show Label, Value, and Timestamp

Next, we’ll want to edit the symbol’s presentation layer, i.e. the symbol template file, to either show or
hide the Label, Value, and/or Timestamp, based on the values of the corresponding user options we
defined in the symbol definition object.

The Angular)S ngShow directive lets us conditionally show an HTML element and its children based on
a Boolean value. The options we defined will be available in the scope.config object as properties.

ng-show="config.ShowlLabel">

< ng-
style="{color:config.LabelColor}">{{Label}}</
< ng-show="config.ShowValue">

< ng-
style="{color:config.ValueColor}">{{Value}} {{Units}}</ > </
< ng-show="config.ShowTimestamp">

< ng-
style="{color:config.LabelColor}">{{Timestamp}}</ > </

32| Page

Create the Config Pane Template File

First, we'll create the config pane template file using the naming convention, sym-<name>-config.html,
and place the file in the following location:

%PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\sym-arrow-config.htm|

Then we’ll add INPUT elements of checkbox type to the HTML file, one checkbox for each option
that can be toggled.

/>

Finally, we’ll use the Angular ngModel directive to bind the value of options to the value of the
checkboxes. This way the checkboxes will be checked if the option that they’re modeling is true or
unchecked if its false, and when we check or uncheck the checkbox it will update the
corresponding property being modeled.

type="checkbox" name="ShowLabel"
ng-model="config.ShowlLabel"
/>Show Label< />

type="checkbox" name="ShowTimestamp"

ng-model="config.ShowTimestamp"
/>Show Timestamp< />
>
>

type="checkbox" name="ShowValue"
ng-model="config.ShowValue"
</ >
</

33| Page

Expose the Configuration Pane through a Context-Menu Option

We want to be able to right click on the symbol and select the Format Wind Arrow option to open the
configuration pane we have created.

Format Wind Arrow...

Add ation Link..
Switch Symbolto »

We can use the configOptions property of the symbol definition object to specify the options in this
context menu. The configOptions is a function that returns an array of objects, each object defining an
option in this context menu. In our case we want a single option in the array to open the configuration
pane. We should give the option object a title property, which will be the text that’s shown in the
context menu. We'll also define the mode, which will be the unique identifier for the configuration pane
that’s open, and if the user were to select another arrow symbol, then the configuration pane will stay
open and display information for the other symbol. The default action of one of these options, when
selected in the context menu, is to open the configuration pane, so we will not specify a custom action
property.

var definition = {

: function() {
return [

{

title: 'Format Wind Arrow',
mode: 'formatWindArrow'

We should now be able to use this context menu option to open the configuration pane and modify the
symbol’s presentation through by toggling the checkboxes.

Format Wind Arrow v

Show Label

« Show Timestamp
« Show Value

6. EXERCISE 5: Add Styles to Symbol and Configuration Pane

6.1. Objectives

* Add class attributes to elements
* Create the CSS file
* Configure styles through the CSS file

6.2. Background

To style our symbol we’ll need to use CSS (Cascading Style Sheet). A common method to manage CSS
and separation of concerns is to write the CSS in a separate file and reference that file within the HTML.
Within the Pl Vision extensibility framework, you’re not required to reference your CSS files explicitly in
your HTML template files, instead any CSS files added to the following folder will get a reference to
them injected into the index.html file of the Pl Vision Web Application:

%PIHOME64%\PIVision\Scripts\app\editor\symbols\ext\

These references to the custom stylesheets will be injected into the index.html file preceding any native
stylesheet references. Therefore, custom CSS files with selectors that have the same specificity as the
native CSS will be overridden by the native CSS. Typical CSS specificity and precedence behavior should
be considered.

6.3. OBJECTIVE: Add Class Attributes to Elements

Within the symbol template and config HTML files, identify which elements to add styles to, and then
add a class attribute to those elements with unique class names accordingly.

6.4. OBIJECTIVE: Create the CSS File

We’ll need to create the CSS file that will hold the custom styles for the symbol HTML. This file should
be placed in the symbol extensibility folder.

6.5. OBIJECTIVE: Configure Styles through the CSS File

Use CSS selectors to style the template and config HTML elements.

35| Page

SOLUTION

Add Class Attributes to Elements

WEe’'ll examine the sym-arrow.template.html and sym-arrow-config.html files to identity which HTML
elements we want to style, and then we’ll add class attributes to those elements that we can then use in
our CSS selectors in the CSS file.

In the sym-arrow-template.html file we’ll add a class to the containing DIV for the labels, and one for the
SPAN elements for each of the labels. We'll also add a class to the SVG element.

ng-style="{width: position.width}">
< ng-show="config.ShowlLabel">
class="heading-1label"
ng-style="{color:config.LabelColor}"
>{{Label}}</

class="sample-arrow"
width="95%" height="95%" viewBox="0 @ 70 70"
xmlns="http://www.w3.0rg/2000/svg" >

In the sym-arrow-config.html file we’ll add a class for the containing DIV, and a class for the checkbox
LABEL elements.

class="config-layout">
class="config-checkbox">

>
class="config-checkbox">

36| Page

Create the CSS File

We'll create the CSS file with the following path:

%PIHOMEG64%\PIVision\Scripts\app\editor\symbols\ext\sym-arrow.css

The name of the CSS file does not need to follow the naming convention we’ve been using up to this
point. All CSS files in this folder should get references to them injected into the index.html file. We'll be
using this naming convention to easily associate the files for our custom symbol. It is possible, however,
to use one master CSS file for multiple customs symbols.

Depending on the developer tools available in your browser, you can view the index.html file loaded by
your browser, and inside of this file you should be able to find a LINK element referencing the CSS file
we have created. If you're not able to see the file, even after clearing your browser cache and a hard
reload, then you may have to recycle the PIVisionServiceAppPool application pool in IIS; you should
only have to do this once, even after changing the contents of the file, as long as the file name doesn’t
change.

Sources
Page
O top

& ariveron_vis19p
PlVision

window.PI
Content/css window.PIVisua
Images window.PI
Scripts window.PIVi
scripts/app/editor/symbols/ext/icons

(index) Link href="/

» & by2.uservoice.com

» O widget.uservoice.com

Configure Styles through the CSS File

In the CSS file, we'll use CSS selectors to modify the alignment and position of the HTML elements that
make up our symbol’s presentation layer and the configuration pane.

37| Page

padding-Top: 10px;
.heading-group {
position: absolute;
left: ©;
font-size: 15px;
text-align: center;
white-space: nowrap;
overflow: hidden;
text-overflow: ellipsis;

.heading-label {

margin-right: 2px

.config-layout {
padding: 15px;
font-size: 14px

}

.config-checkbox {
display: flex;
align-items: center;
margin-top: 8px;
margin-left: 15px;
font-size: 14px;

38| Page

Have an idea how to
improve our products?

OSlsoft wants to hear
from you!

https://feedback.osisoft.com/

AR
4
i

39| Page

'10 OSlsoft. Learning

Pl SYSTEM
LEARNING

MADE EASY!

Accelerate success with the
new OSlsoft Learning platform.

VISIT LEARNING.OSISOFT.COM

(@ osi:.

© Copyright 2020
OSlsoft, LLC

