

PI World 2019 Lab

Modernizing PI SDK Tag-based Applications

2 | P a g e

OSIsoft, LLC
1600 Alvarado Street
San Leandro, CA 94577 USA
Tel: (01) 510-297-5800
Web: http://www.osisoft.com

© 2019 by OSIsoft, LLC. All rights reserved.

OSIsoft, the OSIsoft logo and logotype, Analytics, PI ProcessBook, PI DataLink, ProcessPoint, Asset
Framework (AF), IT Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI
BatchView, PI Vision, PI Data Services, Event Frames, PI Manual Logger, PI ProfileView, PI
WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM, RtReports and RtWebParts are all
trademarks of OSIsoft, LLC. All other trademarks or trade names used herein are the property of their
respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft,
LLC license agreement and as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR
52.227, as applicable. OSIsoft, LLC.

Published: March 20, 2019

http://www.osisoft.com/

3 | P a g e

Table of Contents

Contents
1. Introduction .. 4

1.1 PI SDK and COM Are Old Technologies .. 4

1.2 Adding New Life to Tag-based Applications .. 4

1.3 Excuses Against AF SDK .. 5

2. Learning Environment ... 6

2.1 Installed Software .. 6

2.2 Tag Naming Patterns .. 6

2.3 Where to Find the Exercises .. 6

2.4 Live Library Help ... 8

3. Common Tasks for Each Exercise .. 11

3.1 Set Startup Project ... 11

3.2 Set Target .NET Framework ... 12

3.3 Swap PI SDK References with AF SDK .. 12

3.4 Add C# using or VB Imports to Your Code ... 13

3.5 Remove STAThread Attribute .. 14

3.6 Remove COM Housekeeping ... 14

3.7 PI SDK Performance Versus AF SDK ... 15

4. The Exercises ... 17

4.1 Exercise 1 – Connect to a PI Data Archive and Read Data ... 19

4.2 Exercise 2 – Reading Data from a List of PI Points ... 23

4.3 Exercise 3 – Writing Data in Bulk ... 27

4.4 Exercise 4 – Execute Searches for PI Points and Retrieve Summary Data 31

Appendix 1 – Bonus Applications .. 35

Tag Creation Bonus with AF SDK ... 35

PI Data Archive Metadata Bonus .. 35

Appendix 2 – C# Cheat Sheet for VB.NET ... 39

Save the Date! .. 41

4 | P a g e

1. Introduction

1.1 PI SDK and COM Are Old Technologies

PI SDK heavily relies upon Microsoft’s Component Object Model (COM) and both are considered aging
technologies. In 2015, OSIsoft stopped recommending PI SDK for any new development. PI SDK has
been in maintenance mode for many years, meaning there are no – and will be no – new features
released. All you may expect from PI SDK releases are bug fixes and security patches.

While Component Object Model is efficient at certain low level tasks or things like
interprocess communications, many application developers find it difficult to work with.
COM applications are cumbersome to write, difficult to debug, sluggish in performance, and
prone to memory leaks.

1.2 Adding New Life to Tag-based Applications

A common goal for every developer of tag-based applications would be to have their critical
applications continue to perform their intended functions, and not to be an unfortunate
casualty of a Microsoft decision to cease support, as they have done for Windows XP,
Internet Explorer, Silverlight, etc.

There is a way to extend the life of your tag-based applications. That’s the good news. The
better news is that your applications will be more secure and perform faster too. These
benefits may all be realized by porting your applications away from COM and to managed
.NET Framework. This means migrating the application from PI SDK to AF SDK.

Let’s consider some of the benefits.

• AF SDK does not use a COM data access layer when communicating with the PI Data
Archive. This avoids STA/MTA issues that exist when developing .NET applications
with the PI SDK.

• COM objects also no longer need to be marshalled to equivalent .NET data types,
which improves performance.

• Finally, the experience of developing applications that target PI using the AF SDK is
more pleasant, since it was designed expressly for .NET developers. Classes such as
PINamedValues that were not so easy to work with via COM Interop have been
replaced by the more ubiquitous .NET dictionary objects.

5 | P a g e

1.3 Excuses Against AF SDK

Here are the top 3 excuses against using AF SDK:

1. “I don’t have an AF database.”

2. “IT won’t let me install it.”

3. “IT won’t let me use Visual Studio.”

Let’s dispel the biggest myth about AF SDK: that you must have an AF Server and or AF
database. This is not true. Obviously, if you were wanting to develop an Asset-based
application, then you would need an asset hierarchy. But to develop a Tag-based
application, such as what you have done in the past with PI SDK, you absolutely do not need
an AF Server or database. Your application may interact directly with a PI Data Archive and
PI points without ever touching an asset hierarchy. The exercises in this lab will clearly
prove that.

A claim that IT will not let you install AF SDK is hard to fathom. Since PI Server 2012, the AF
Client has been a standard part of the PI Data Archive setup. If your company has upgraded
the PI Server since 2012, you should already have AF SDK installed. However, if your
company has not upgraded since 2012, then perhaps modernizing the infrastructure should
be a higher priority than modernizing a Tag-based application that runs within that
infrastructure.

A credible excuse is that IT restricts access to Visual Studio. Different IT departments
possess different reasons for doing so. To address a few of these:

• If IT wants to control cost of software deployments, consider using Visual Studio
Code, which is free and its license allows both personal and commercial
development.

• If IT is worried about security, point out that managed .NET has better security than
unmanaged COM, and therefore an AF SDK Tag-based application is much more
secure than a PI SDK one.

• If IT only wants qualified developers to use Visual Studio, the argument rests fully on
your shoulders to convince them of your qualifications as a capable application
developer.

If IT still refuses to give you Visual Studio after you and your manager have presented your
strongest justification, you may still use AF SDK with PowerShell. Note, however,
PowerShell is not covered within this lab.

6 | P a g e

2. Learning Environment

2.1 Installed Software

Your VM has been setup with the following:

• PI Data Archive 2018 SP2, which is the latest production release

• PI SMT

• PI SDK client, 32 and 64 bit (the exercises use 64 bit)

• PI SDK Interop libraries for .NET

• AF SDK client (.NET 4.0 compatible)

• Visual Studio 2017 Community Edition

As this lab will work only with tag-based applications, take note that your VM lacks the following since

they are not needed:

• An AF Database

• An AF Server

• SQL Server

The PI Buffer service is loaded. However, since the Visual Studio applications reside on the same VM as

the PI Data Archive, buffering is not enabled. See relevant comments about this in the solution for

Exercise 3, which performs bulk writes to the PI Data Archive.

2.2 Tag Naming Patterns

The tags used in the exercises have the following naming patterns and counts:

Name Pattern Task Tags

Exercise 2.* Bulk reads 260

Exercise 3.* Bulk writes 1000

Exercise 4.* Bulk summary 314

2.3 Where to Find the Exercises

All the Exercises for this lab can be found in a single Visual Studio Solution file. This lab offers versions in

C# as well as VB.NET:

C:\Modernizing Tag-based Applications\CSharp\Modernizing Tag-based Applications.sln

C:\Modernizing Tag-based Applications\VB\Modernizing Tag-based Applications.sln

7 | P a g e

There is also a convenient shortcut on your VM’s desktop, pointing to the folder:

C:\Modernizing Tag-based Applications

Each Exercise has a separate project for the challenge, as well one possible solution. As you work your

way through the lab, you can set the project that is being debugged via right-clicking in the Visual Studio

Solutions tab and selecting Set as Startup Project.

Each exercise is invoked from the Main in a similar manner, and your coding efforts can begin in the

routine Exercise1, Exercise2, etc.

C#:

static void Main(string[] args)

{

 try

 {

 Exercise1();

 }

 catch (Exception ex)

 {

 Console.WriteLine(ex.Message);

 }

 Console.WriteLine();

 Console.WriteLine("Press Enter to Exit");

 Console.ReadLine();

}

VB.NET

Sub Main()

 Try

 Exercise1()

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 End Try

 Console.WriteLine()

 Console.WriteLine("Press Enter to Exit")

 Console.ReadLine()

End Sub

Each project contains hints via URL links to Live Library Help. (Although jumping right to the

respective solution project is the ultimate hint 😊.)

8 | P a g e

2.4 Live Library Help

Installing the AF Client will also setup the AFSDK.CHM help file. Live Library is the online
equivalent of the local CHM file. While the PI SDK and the AF SDK are similar, there are
differences with which you will become familiar through this exercises and browsing the
help.

1. Familiarize yourself with the AF SDK Help. You may use the online help offered by Live Library or
help via the local CHM file. The lessons here utilize Live Library.

For Live Library, open a web browser and enter the URL:

https://livelibrary.osisoft.com/LiveLibrary/

Scroll to the section listed as Developer Technologies. Click on AF SDK Reference.

2. For example, the Overview / PI SDK Equivalent and Examples / Connecting to PI Data Archive
will be useful starting with Exercise 1.

9 | P a g e

|

11 | P a g e

3. Common Tasks for Each Exercise

Each exercise has a different primary task, but they share many common sub-tasks. These
sub-tasks may need to be performed for each of the 4 exercises. This assumes you have
loaded Visual Studio 2017, and opened the solution file Modernizing Tag-based
Applications.sln.

3.1 Set Startup Project

Before running a specific exercise or its
solution, be sure to right-click on the project
in the Solution Explorer pane and select
Set as Startup Project.

See illustration to the right for an example of
selecting Exercise1 as the startup project.

Later, whenever you click the green Start
button at the top of Visual Studio’s menu bar,
the designated startup project will run for the
current exercise.

The solution has 11 different projects, so be
sure you are on the correct one for the
exercise at hand.

12 | P a g e

3.2 Set Target .NET Framework

The specific release of AF SDK determines the minimum .NET Framework that your
application must target. This is usually found in the PI AF Release Notes. For this lab, the
target framework should be .NET Framework 4.6.2. Note: this has already been set for you.

The OSIsoft.AF.PI namespace is only available for .NET 4.x Framework or higher.

3.3 Swap PI SDK References with AF SDK

Remove the references to the PI SDK and add a reference to the AF SDK 4.0.0.0. To remove
PI SDK from your project:

13 | P a g e

Then you may add AF SDK references. Note: although the AF SDK library has already been
referenced for you, here are the steps for future reference:

Please note that it takes some time for Visual Studio to fully populate the list of components
in the .NET tab of the Add Reference dialog, and often the 2.0 version of the AF SDK will
show up first. Wait to select the 4.0 version.

Be sure to click on the check box to select the 4.0.0.0 version before clicking the OK button.
A common mistake is merely to highlight the row for 4.0.0.0 and then click OK; doing so will
not add any references.

3.4 Add C# using or VB Imports to Your Code

Begin converting the source code from a PI SDK solution to an AF SDK solution. It will be
easiest if you add C# using or VB Imports statements for AF to the top of each program:

C# VB

using OSIsoft.AF.Data;

using OSIsoft.AF.PI;

using OSIsoft.AF.Asset;

using OSIsoft.AF.Time;

Imports OSIsoft.AF.Data

Imports OSIsoft.AF.PI

Imports OSIsoft.AF.Asset

Imports OSIsoft.AF.Time

14 | P a g e

3.5 Remove STAThread Attribute

COM has an affinity for single thread apartments (STA). To put it another way, a PI SDK
application running in a multi-threaded apartment (MTA) would be slower than its STA
counterpart. However, .NET is happier and performs better with MTA. Thus, you should
delete the STAThread attribute for AF SDK.

[STAThread] // C# - Delete attribute on left

static void Main(string[] args)

<STAThread()> ' VB – Delete attribute on left

Sub Main(ByVal args() As String)

3.6 Remove COM Housekeeping

AF SDK uses managed .NET code, so there is no need for the extra lines of “housekeeping”
code to release COM objects. You may shorten the code by removing any snippets
associated with the pseudo-code below:

Marshal.ReleaseComObject(variable)

Marshal.FinalReleaseComObject(variable)

GC.KeepAlive(variable)

To elaborate on “snippets associated”, this does not mean just delete the one line. For
instance, here a block needs to be deleted since the entire block is associated with COM
housekeeping:

// C# - COM Housekeeping Block

if (values != null)

{

 Marshal.ReleaseComObject(values);

 values = null;

}

' VB – COM Housekeeping Block

If values IsNot Nothing Then

 Marshal.ReleaseComObject(values)

 values = Nothing

End If

15 | P a g e

3.7 PI SDK Performance Versus AF SDK

Exercises 2 through 4 use a Diagnostics.Stopwatch to measure performance. You may try a
performance test before you modify any of the code for these exercises. To do that:

1. Set ExerciseN as the Startup Project, where “N” is the exercise number.

a. This uses PI SDK.

b. Keep in mind this may have been a cold run without previous caching.

2. Set ExerciseN_Solution as the Startup Project.

a. This uses AF SDK.

b. Run the exercise and note the elapsed time displayed in the console
window.

c. Keep in mind this would have been a warm run with caching from the
previous run.

3. Once again set ExerciseN as the Startup Project.

a. This once again uses PI SDK.

b. Run the exercise and note the elapsed time displayed in the console
window.

c. Keep in mind this would too be a warm run.

d. Finally, compare the timings here with the AF SDK run in step 2 above.

What you will observe is the AF SDK examples run faster than the PI SDK equivalent. If you
do not see this, be sure the AF SDK application does not use the STAThread attribute.

17 | P a g e

4. The Exercises

The challenge presented in the four lab exercises will be to migrate several tag-based
applications from PI SDK to AF SDK. Neither an AF Server nor an AF Database will be used as
all requests will go directly to a PI Data Archive.

1. Connect to a PI Data Archive and obtain data using the AF SDK

2. Retrieve data for a list of PI Points using bulk methods for better performance

3. Write data using bulk methods for better performance

4. Execute searches for PI Points and retrieving summary data

As a bonus, there are 2 small applets that provide further learning examples of using the AF
SDK for tag-based applications. Since these applets are not exercises, an equivalent PI SDK
example is not presented.

1. Programmatically create all “Exercise N.” tags used in these exercises.

2. Querying a PI Data Archive for metadata, such as information about its Point Classes
or PI State Sets.

 Exercise 1

19 | P a g e

4.1 Exercise 1 – Connect to a PI Data Archive and Read Data

The existing project is a Console application which uses the PI SDK to connect to the default
PI Data Archive, and then read and display a PI Point current value along with a PI Point
archive value. Before beginning the conversion to the AF SDK, you may wish to run the
program in its current state to see the expected output.

1. Compile the application and run it. The output should look like the figure below.

2. Convert the code that connects to the PI Data Archive.
a. There is no SDK object in AF; instead, just create the top level PIServers collection.
b. The AF SDK uses the class PIServer instead of Server.
c. The AF SDK uses the term Connect instead of Open. Like the PI SDK, connections are

opened implicitly as well.

3. Connect to the PI Data Archive.

// C# - Connect to the default PI Server

PIServers kst = new PIServers();
PIServer dataArchive = kst.DefaultPIServer;
dataArchive.Connect();

' VB - Connect to the default PI Server

Dim kst As PIServers = New PIServers()

Dim dataArchive As PIServer = kst.DefaultPIServer

dataArchive.Connect()

...\bin\x64\Debug\Exercise1.exe _  X

Exercise 1 - PI SDK Read Tag Data

PI Point: \\PISRV01\SINUSOID
 Value: 18.13982
 Timestamp: 12/13/2018 10:40:50 AM
 IsGood: True
 IsAnnotated: False

PI Point: \\PISRV01\CDM158
 Value: Cascade
 Timestamp: 12/12/2018 11:59:50 PM
 IsGood: True
 IsAnnotated: False

Press Enter to Exit

Exercise 1

20 | P a g e

4. Convert the code that retrieves the snapshot - or current value - for the Float32 “sinusoid”
PI Point to use the AF SDK’s PI Point object.

a. Finds in AF are normally static methods of the object type you are seeking; in this
case, PIPoint.FindPIPoint. There is no global Points collection as in the PI SDK.

b. All data is returned as an AFValue.
c. Digital States are returned as the type AFEnumerationValue, which is a .NET object.

Consequently, there’s no need for the If statement used with the PI SDK to
determine if the returned value is a Digital State.

d. Timestamps are represented by the type AFTime, which has standard .NET
DateTime exposure for LocalTime, UtcTime, and UtcSeconds.

e. Status bits, such as Annotated, are always available directly from the AFValue
object.

// C# - Retrieve snapshot value of Float32 tag sinusoid

PIPoint point = PIPoint.FindPIPoint(dataArchive, "sinusoid");

AFValue value = point.CurrentValue();

Console.WriteLine("PI Point: {0}", point.GetPath());

Console.WriteLine(" Value: {0}", value.Value);

Console.WriteLine(" Timestamp: {0}", value.Timestamp.LocalTime);

Console.WriteLine(" IsGood: {0}", value.IsGood);

Console.WriteLine(" IsAnnotated: {0}", value.Annotated);

5. Convert the code that retrieves an archive value for the “CDM158” PI Point. Though
“SINUSOID” is a Float32 tag, and “CDM158” is a digital tag, note the similarity of the code being
used.

' VB - Retrieve recorded archive of digital tag CDM158

point = PIPoint.FindPIPoint(dataArchive,"cdm158")

Dim today As AFTime = New AFTime("t")

value = point.RecordedValue(today, AFRetrievalMode.AtOrBefore)

Console.WriteLine("PI Point: {0}", attr.GetPath())

Console.WriteLine(" Value: {0}", value.Value)

Console.WriteLine(" Timestamp: {0}", value.Timestamp.LocalTime)

Console.WriteLine(" IsGood: {0}", value.IsGood)

Console.WriteLine(" IsAnnotated: {0}", value.Annotated)

6. Run your program and validate the output. Source code for the completed solution can be
found under Exercise1_Solution project. This completes the exercise.

 Exercise 1

21 | P a g e

...\bin\x64\Debug\Exercise1_Solution.exe _  X

Exercise 1 - AF SDK Read Tag Data

PI Point: \\PISRV01\SINUSOID
 Value: 18.13982
 Timestamp: 12/13/2018 10:40:50 AM
 IsGood: True
 IsAnnotated: False

PI Point: \\PISRV01\CDM158
 Value: Cascade
 Timestamp: 12/12/2018 11:59:50 PM
 IsGood: True
 IsAnnotated: False

Press Enter to Exit

 Exercise 2

23 | P a g e

4.2 Exercise 2 – Reading Data from a List of PI Points

In this exercise, you will convert an existing PI SDK program to use the AF SDK as you did in the previous

exercise. This application builds a list of PI Points and averages the value of their snapshots. Finally, it

retrieves the archive values from the last 24 hours for each tag and finds the largest count of “good”

values. The important takeaway should not be the calculations being used but rather on the data

retrieval methods being used.

Before you modify any code, you may be interested in a quick performance test. Refer to the section

labeled “AF SDK versus PI SDK Performance Tests” to see how to do this.

Steps for this exercise:

1. Make sure Exercise2 is set as the current project. The AF SDK has already been referenced in
your project and the appropriate using statements have been added for your convenience.

2. Compile the application and run it. The output should look similar to the figure below.

3. Building upon what was learned in Exercise 1, shorten the code that sets to the PI Data Archive.

We will use an implicit connection.

// C# - Get the default PI Server

PIServer dataArchive = new PIServers().DefaultPIServer;

' VB - Get the default PI Server

Dim dataArchive As PIServer = New PIServers().DefaultPIServer

4. Use the static FindPIPoints method with the nameFilter overload on the PIPoint object to search
for the PI Points whose tag starts with “Exercise 2.*” Pass the resulting IEnumerable into the
constructor of PIPointList to build your PIPointList.

...\bin\x64\Debug\Exercise2.exe _  X

Exercise 2 - PI SDK Reading Data from a List of PI Points

Number of tags returned from the search: 260
The average of the snapshot values is: 329.717398710434

Largest 'good' count was 2879
It took 10074ms to find the 'good' counts of the points

Press Enter to Exit

Exercise 2

24 | P a g e

// C# - Get all points for starting with "Exercise 2.*"

IEnumerable<PIPoint> searchResults = PIPoint.FindPIPoints(dataArchive

 , "Exercise 2.*");

PIPointList pointList = new PIPointList(searchResults);

' VB - Get all points starting with "Exercise 2.*"

Dim searchResults As IEnumerable(Of PIPoint) =

PIPoint.FindPIPoints(dataArchive, _

 "Exercise 2.*")

Dim pointList As PIPointList = New PIPointList(searchResults)

5. Use the bulk CurrentValue method on the pointList to retrieve the snapshots. The CurrentValue
method in the AF SDK returns an AFListResults object which contains both results and any
errors that may have occurred.

// C# - Get all of the snapshot values

AFListResults<PIPoint, AFValue> snapshotValues =

 pointList.CurrentValue();

' VB - Get all of the snapshot values with bulk CurrentValue() call

Dim snapshotValues As AFListResults(Of PIPoint, AFValue) =

pointList.CurrentValue

6. Change the code that averages the “good” snapshot values:
a. Change the if statement to check for errors by accessing the HasErrors property on the

results.
b. The foreach loop should be modified to iterate through AFValue objects instead of

PointValue objects.
c. Change the IsGood() method call on PIValue to use the IsGood property on AFValue.
d. Use the AFValue.ValueAsDouble() method to add the current snapshot to the total.

// C# - If there were no errors...

if (!snapshotValues.HasErrors)

{

 foreach (AFValue snapshot in snapshotValues)

 {

 if (snapshot.IsGood)

 {

 snapshotTotal += snapshot.ValueAsDouble();

 snapshotCount++;

 }

 }

}

 Exercise 2

25 | P a g e

' VB - If there were no errors...

If Not snapshotValues.HasErrors Then

 For Each snapshot As AFValue In snapshotValues

 If snapshot.IsGood Then

 snapshotTotal += snapshot.ValueAsDouble()

 snapshotCount += 1

 End If

 Next

End If

7. Change the code that finds the largest count of “good” values in the set of PI Point archive
values from the last 24 hours.

a. Remove the PISDK namespace qualifier from the foreach loop to iterate the PIPoint

objects from the AF SDK’s OSIsoft.AF.PI namespace.
b. The RecordedValues method call is made directly against the PIPoint object instead of

its Data property as it is in the PI SDK.
i. Change the method call to use the AF SDK’s AFTimeRange to object to pass the

start and end time.
ii. Use the new AFBoundaryType.Inside constant to specify the inside boundary

type.
iii. Pass null and false as the last two parameters, since we do not want to provide

a filter expression. For VB, pass Nothing and False instead.
c. Change the inner foreach loop to iterate AFValue objects as you did in Step 6.
d. Change the IsGood() method call on PIValue to use the IsGood property on AFValue.

// C# Snippet

foreach (PIPoint point in pointList)

{

 int goodCount = 0;

 AFValues pointValues = point.RecordedValues(

 new AFTimeRange("*-24h", "*"), AFBoundaryType.Inside, null,

false);

 // For each value in this point's set...

 foreach (AFValue pointValue in pointValues)

 {

 // Count the 'good' ones

 if (pointValue.IsGood)

 goodCount++;

 }

 // Keep track of the highest 'good' count on a single point

 if (goodCount > maxGoodCount)

 maxGoodCount = goodCount;

}

VB Snippet continues next page

Exercise 2

26 | P a g e

' VB Snippet.

For Each point As PIPoint In pointList

 Dim goodCount As Integer = 0

 Dim pointValues As AFValues = _

 point.RecordedValues(New AFTimeRange("*-24h", "*"), _

 AFBoundaryType.Inside, Nothing, False)

 ' For each value in this point's set...

 For Each pointValue As AFValue In pointValues

 ' Count the 'good' ones

 If pointValue.IsGood Then

 goodCount += 1

 End If

 Next

 ' Keep track of the highest 'good' count on a single point

 If (goodCount > maxGoodCount) Then

 maxGoodCount = goodCount

 End If

Next

8. Compile the application and run it. The application should produce similar results to the first run
at the beginning of the exercise, except the AF SDK version will be faster.

...\bin\x64\Debug\Exercise2_Solution.exe _  X

Exercise 2 - AF SDK Reading Data from a List of PI Points

Number of tags returned from the search: 260
The average of the snapshot values is: 331.163272907184

Largest 'good' count was 2879
It took 1455ms to find the 'good' counts of the points

Press Enter to Exit

4.3 Exercise 3 – Writing Data in Bulk

In this exercise, you will learn how to more efficiently write data, by making bulk calls to the
AF SDK. Many performance issues can strictly be tied to making multiple serial calls to the PI
Data Archive. Better performance is realized with fewer RPC’s across the network.

This exercise is divided into two parts. In the first part you will utilize PI SDK to write
multiple events to a set of PI Points, one point at a time. In the second part you will utilize
AF SDK to write the same number of events to the same set of points, in bulk. The TODO
and hints will be found in the second part.

1. Switch the default project to Exercise3 via the Set as StartUp Project context menu option in
Solution Explorer.

2. The first block of code in the template retrieves multiple PI Points from PI SDK, where the points
match the name pattern “Exercise 3.*”.

// Find some points

PISDK.PointList foundPoints = piServer.GetPoints("tag = 'Exercise 3.*'");

3. The next block of code in the template generates multiple values for each point, where the
values are randomly generated and the timestamp difference between one event to the next is
1 minute. This is done inside a loop over each PIPoint that was found.

4. While still inside the loop, the next step would be to update values for the current PIPoint.
Tracking of errors, if any, is also performed on a per PIPoint basis.

5. Run this Exercise3 program and the console output should look like the figure below. Note the

total elapsed time for the writes shown by the output.

6. The next part of the exercise will show how efficiently making a bulk write call through AF SDK

for multiple points.

...\bin\x64\Debug\Exercise3.exe _  X

Exercise 3 - PI SDK UpdateValues

Updated 1000 points with 3 events per-point.
1000 Remote Procedure Calls were issued to update values.
There were 3000 total values updated in 1262ms.
Error count: 0

Press Enter to Exit

Exercise 3

28 | P a g e

7. The following is the second part of the exercise. In the same solution, switch the default project
to Exercise3_AFSDK via the Set as StartUp Project context menu option in Solution Explorer.

8. The first block of code in the template retrieves multiple PI Points from AF SDK. The

PIPoint.FindPIPoints call has several overloads for finding points. Change this code where
indicated with the “TODO” comment to find all points matching the name pattern “Exercise
3.*”. The result of a FindPIPoints call is an IEnumerable collection. Enumerating over the
collection will retrieve points from the server in pages for you. Because of this, you should be
careful not to enumerate the raw return more than once.

 // Find some points

 IEnumerable<PIPoint> foundPoints = PIPoint.FindPIPoints(piServer,

"Exercise 3.*");

 PIPointList pointlist = new PIPointList(foundPoints);

9. The next block of code in the template generates multiple values for each point, where each
value has a reference to the corresponding point object. Similar to the first part of the exercise
the values are randomly generated and the timestamp difference between one event to the
next is 1 minute. The only difference here is an AFValues list is created, where each AFValue is
associated with its corresponding PIPoint.

10. The following block of timed code will be used to demonstrate the advantage of making bulk

calls. Replace the “TODO” comment in this block with a line of code to write multiple values for
all of the points in one call.

AFErrors<AFValue> results = dataArchive.UpdateValues(values,

AFUpdateOption.Replace);

Exercise 3

29 | P a g e

11. Run this Exercise3_AFSDK program and validate the output Source code for the completed

solution can be found under Exercise3_Solution project. The console output should look similar
to the figure below. Note the total elapsed time and compare it with that from the first part of
the exercise with PI SDK. This completes exercise 3.

...\bin\x64\Debug\Exercise3_Solution.exe _  X

Exercise 3 - AF SDK UpdateValues

Updated 1000 points with 3 events per-point.
1 Remote Procedure Call was required to update values.
There were 3000 total values updated in 252ms.
Error count: 0

Press Enter to Exit

4.4 Exercise 4 – Execute Searches for PI Points
 and Retrieve Summary Data

In this exercise, you will convert an existing PI SDK program to use the AF SDK as you did in
previous exercises. This application searches for PI Points with specific attribute values and
tag naming pattern. It then queries the points for hourly averages for the last 24 hours and
calculates the “average of averages.” It prints out the largest average of averages at the end.

Before you modify any code, you may be interested in a quick performance test. Refer to
the section labeled “AF SDK versus PI SDK Performance Tests” to see how to do this.

1. Make sure Exercise4 is set as the current project. The AF SDK has already been
referenced in your project and the appropriate using/Imports statements have been
added for your convenience.

2. Compile the application and run it. The output should look like the figure below

3. Remove the GetPointsSQL call and build a list of query containing the same search criteria:

a. Create a query string to return only points that:

• Have a Tag name containing “Exercise 4.*”.

• Have a PointSource of “R”.

• Have a Location4 code of “1”.

b. Construct a PIPointList by passing the results from FindPIPoints using the query.

// C# snippet

string query = "PointSource:='R' Location4:='1' Tag:='Exercise 4.*'";

PIPointList pointList = new PIPointList(

 PIPoint.FindPIPoints(dataArchive, query, false));

...\bin\x64\Debug\Exercise4.exe _  X

Exercise 4 - PI SDK Search for Points and Making Summaries Calls

It took 592.0ms to execute the search.
Number of points found matching criteria: 314

It took 1893ms to find the largest average of averages.
The largest average of averages was 346.759473573728

Press Enter to Exit

Exercise 4

32 | P a g e

' VB snippet

Dim query As String = "PointSource:='R' Location4:='1' Tag:='Exercise 4.*'"

Dim pointList As PIPointList = New PIPointList(_

 PIPoint.FindPIPoints(dataArchive, query, False))

4. Create a bulk call to retrieve the summaries for each PI Point in the list.

a. Create a PIPagingConfiguration object to specify how the PI Data Archive should
page the results back to the client. In this exercise we ask the data archive to
send back results for 100 tags per page. Paging is abstracted from developers;
however, it can impact the performance of the bulk call.

b. Make the Summaries call on the pointList instead of each individual point:

i. Create a new AFTimeRange to pass the start and end time for the query.

ii. Create a new AFTimeSpan to specify the summary duration.

iii. Specify AFSummaryTypes.Average for the summary type. If you wanted
additional summary types to be returned you would OR “|” them together.

iv. Use the same AFCalculationBasis of TimeWeightedContinuous as the
previous example used.

v. Automatically calculate the timestamp of the summaries by specifying
AFTimestampCalculation.Auto.

vi. Pass in the PIPagingConfiguration object created earlier.

// C# - Get a 1 hour average for the last 24 hours

PIPagingConfiguration pagingConfig = new PIPagingConfiguration(

 PIPageType.TagCount, 100);

IEnumerable<IDictionary<AFSummaryTypes, AFValues>> summariesResults =

 pointList.Summaries(

 new AFTimeRange("*-24h", "*"),

 new AFTimeSpan(hours: 1.0),

 AFSummaryTypes.Average,

 AFCalculationBasis.TimeWeightedContinuous,

 AFTimestampCalculation.Auto,

 pagingConfig);

' VB - Get a 1 hour average for the last 24 hours

Dim pagingConfig As PIPagingConfiguration = _

 New PIPagingConfiguration(PIPageType.TagCount, 100)

Dim summariesResults As IEnumerable(Of IDictionary(Of AFSummaryTypes,

AFValues)) =

 pointList.Summaries(New AFTimeRange("*-24h", "*"),

 New AFTimeSpan(hours:=1),

 AFSummaryTypes.Average,

AFCalculationBasis.TimeWeightedContinuous,

Exercise 4

33 | P a g e

 AFTimestampCalculation.Auto,

 pagingConfig)

5. Modify the foreach loops to work with the bulk method.

a. Change the outer foreach loop to iterate through the results from the bulk Summaries
method which is an enumerable of dictionaries keyed on AFSummaryTypes.

b. Change the inner foreach loop to iterate through each AFValue rather than the each
PIValue.

c. Change the IsGood() method call on PIValue to use the IsGood property on AFValue.

// C# snippet

foreach (IDictionary<AFSummaryTypes, AFValues> summariesResult in summariesResults)

{

 // Find the average of averages by finding the average of hourly averages

 double averageOfAverages = 0.0;

 int count = 0;

 foreach (AFValue average in summariesResult[AFSummaryTypes.Average])

 {

 if (average.IsGood)

 {

 averageOfAverages += average.ValueAsDouble();

 count++;

 }

 }

 // Calculate the average of averages

 averageOfAverages /= count;

 // Keep track of the largest one

 if (averageOfAverages > largestAverageOfAverages)

 largestAverageOfAverages = averageOfAverage

}

' VB snippet

For Each summariesResult As IDictionary(Of AFSummaryTypes, AFValues) In

summariesResults

 ' Find the average of averages by finding the average of hourly averages

 Dim averageOfAverages As Double = 0

 Dim count As Integer = 0

 For Each average As AFValue In summariesResult(AFSummaryTypes.Average)

 If average.IsGood Then

 averageOfAverages += average.ValueAsDouble()

 count += 1

 End If

 Next

 ' Calculate the average of averages

 averageOfAverages /= count

Exercise 4

34 | P a g e

 ' Keep track of the largest one

 If (averageOfAverages > largestAverageOfAverages) Then

 largestAverageOfAverages = averageOfAverages

 End If

Next

6. Compile the application and run it. The application should produce similar results to
the first run at the beginning of the exercise.

...\bin\x64\Debug\Exercise4_Solution.exe _  X

Exercise 4 - AF SDK Search for Points and Making Summaries Calls

It took 526.0ms to execute the search.
Number of points found matching criteria: 314

It took 720.0ms to find the largest average of averages.
The largest average of averages was 346.772748781569

Press Enter to Exit

Appendix 1 – Bonus Applications

There are 2 bonus applications included. They are not lab exercises, nor do they have a PI
SDK challenge. Because of this, each bonus application uses AF SDK only. The lab exercises
use typical data calls – that is, Rich Data Access (RDA) methods to fetch tag data from the PI
Data Archive. The bonus applications do not employ RDA but do show ways to extract
metadata from the PI Data Archive or from a given tag.

Tag Creation Bonus with AF SDK

Tags were created for exercises 2 – 4 many days before the lab. These could have easily
been created using PI Builder and a spreadsheet. However, since this is a lab on tag-based
application development, it makes perfect sense that the tags are created using program
code. Thus, you can see different methods and techniques that may be used to create tags
with your own applications.

To see the code, go to the Visual Studio project named “TagCreation_AFSDK_Bonus”. Note
if you tried to run this application on the lab VM, it most likely would thrown an exception
because the tags already exist.

If you were to first delete all tags prefaced with:

Exercise 2.*

Exercise 3.*

Exercise 4.*

Then you could create them once again without generating an exception.

PI Data Archive Metadata Bonus

The other bonus application, PIServer_Bonus_Applet, can be run against any PI Data
Archive to display some common information such as is it a PI Collective or a stand-alone
server, what is the time and time zone for the server, how many tags are on the server, or
information about the point sources and classes on the server.

This helps extend your learning beyond working with mainly with tags as this applet works
mainly with the PI Data Archive and various objects or properties belonging to it.

Appendix 1

36 | P a g e

Sample Console Output

PI Data Archive: PISRV01

 Stand-alone server.

Host: PISRV01

Aliases (Count of 1):

 localhost

Version : 3.4.425.1434

Time Zone : (UTC-08:00) Pacific Time (US & Canada)

Point Count: 1587

Point Sources (Count of 7):

 9

 L

 Lab

 PIBatch-InternalUse-1

 PICampaign-InternalUse-1

 PITransferRecords-InternalUse-1

 R

Point Classes (Count of 2):

 base

 classic

StateSets (Count of 4):

 SYSTEM, Count: 319

 BatchAct, Count: 2

 Phases, Count: 8

 Modes, Count: 5

Peek into subset of SYSTEM state set (code 300-305):

 Code: 300, Text: Scan Timeout

 Code: 301, Text: No_Sample

 Code: 302, Text: Arc Off-line

 Code: 303, Text: ISU Saw No Data

 Code: 304, Text: ?304

 Code: 305, Text: Good

Point Attributes for SINUSOID:

 descriptor = (String) 12 Hour Sine Wave

 exdesc = (String)

 typicalvalue = (Single) 50

 engunits = (String)

Appendix 1

37 | P a g e

 zero = (Single) 0

 span = (Single) 100

 pointtype = (PIPointType) Float32

 pointsource = (String) R

 scan = (SByte) 1

 excmin = (UInt16) 0

 excmax = (UInt32) 600

 excdev = (Single) 1

 shutdown = (SByte) 1

 archiving = (SByte) 1

 compressing = (SByte) 1

 step = (SByte) 0

 compmin = (UInt16) 0

 compmax = (UInt32) 28800

 compdev = (Single) 2

 creationdate = (DateTime) 12/6/2018 12:53:47 PM LocalTime

 creator = (String) piadmin

 changedate = (DateTime) 12/6/2018 12:53:47 PM LocalTime

. . . some text omitted for brevity . . .

 dataowner = (String) piadmin

 datagroup = (String) piadmins

 dataaccess = (String) o:rw g:rw w:r

 datasecurity = (String) piadmin: A(r,w) | piadmins: A(r,w) | PIWorld: A(r)

 pointid = (UInt32) 1

 recno = (UInt32) 1

 future = (Byte) 0

 ptclassname = (String) classic

 ptclassid = (UInt32) 2

 ptclassrev = (UInt32) 1

 tag = (String) SINUSOID

 sourcetag = (String)

 digitalset = (String)

 compdevpercent = (Single) 2

 excdevpercent = (Single) 1

Press Enter to Exit

Appendix 2 – C# Cheat Sheet for VB.NET

Most of the .NET examples for many of the labs or PI Square postings are in C#. This lab is a
rare exception that offers both. In other venues, occasionally there is a VB.NET post, but the
VB developers at PI Square will agree that there are not enough VB examples. It would be
impractical to wait for every C# example to be translated into VB.NET because that will likely
not happen. Instead, you may consider yourself to be proactive and try to translate the
code yourself.

Towards that end, the following link highlights some important distinctions between C# and
VB.NET that can help you more easily perform the translations on your own.

CSharp Cheat Sheet for VB.NET Developers

https://pisquare.osisoft.com/community/developers-club/blog/2018/03/19/csharp-cheat-
sheet-for-vbnet-developers

Topics covered:

• Logical Operators

• C# var keyword for implicitly typed variables

• Conditional Operator (or ? :)

• Null-Coalescing Operator or ??

• Read-only Auto-properties, or a get-only property

• Expression-bodied members

• Remainder or Modulus Operator

• Integer versus Floating Point division

• Using lambdas

• Optional Parenthesis with 0 parameters

• Characters to integers, and vice versa

https://pisquare.osisoft.com/community/developers-club/blog/2018/03/19/csharp-cheat-sheet-for-vbnet-developers
https://pisquare.osisoft.com/community/developers-club/blog/2018/03/19/csharp-cheat-sheet-for-vbnet-developers

41 | P a g e

Save the Date!

OSIsoft PI World Users Conference in Gothenburg, Sweden. September 16-19, 2019.

Register your interest now to receive updates and notification early bird registration opening.

https://pages.osisoft.com/UC-EMEA-Q3-19-PIWorldGBG-

RegisterYourInterest_RegisterYourInterest-LP.html?_ga=2.20661553.86037572.1539782043-

591736536.1533567354

http://pages.osisoft.com/UC-CORP-Q3-18-EMEAUsersConference_RegisterYourInterest2018.html

	Table of Contents
	1. Introduction
	1.1 PI SDK and COM Are Old Technologies
	1.2 Adding New Life to Tag-based Applications
	1.3 Excuses Against AF SDK

	2. Learning Environment
	2.1 Installed Software
	2.2 Tag Naming Patterns
	2.3 Where to Find the Exercises
	2.4 Live Library Help

	3. Common Tasks for Each Exercise
	3.1 Set Startup Project
	3.2 Set Target .NET Framework
	3.3 Swap PI SDK References with AF SDK
	3.4 Add C# using or VB Imports to Your Code
	3.5 Remove STAThread Attribute
	3.6 Remove COM Housekeeping
	3.7 PI SDK Performance Versus AF SDK

	4. The Exercises
	4.1 Exercise 1 – Connect to a PI Data Archive and Read Data
	4.2 Exercise 2 – Reading Data from a List of PI Points
	4.3 Exercise 3 – Writing Data in Bulk
	4.4 Exercise 4 – Execute Searches for PI Points and Retrieve Summary Data

	Appendix 1 – Bonus Applications
	Tag Creation Bonus with AF SDK
	PI Data Archive Metadata Bonus

	Appendix 2 – C# Cheat Sheet for VB.NET
	Save the Date!

