

PI World 2019 Lab

Programmability in the PI Connector for UFL

2 | P a g e

OSIsoft, LLC
1600 Alvarado Street
San Leandro, CA 94577 USA
Tel: (01) 510-297-5800
Web: http://www.osisoft.com

© 2019 by OSIsoft, LLC. All rights reserved.

OSIsoft, the OSIsoft logo and logotype, Analytics, PI ProcessBook, PI DataLink, ProcessPoint, Asset
Framework (AF), IT Monitor, MCN Health Monitor, PI System, PI ActiveView, PI ACE, PI AlarmView, PI
BatchView, PI Vision, PI Data Services, Event Frames, PI Manual Logger, PI ProfileView, PI
WebParts, ProTRAQ, RLINK, RtAnalytics, RtBaseline, RtPortal, RtPM, RtReports and RtWebParts are all
trademarks of OSIsoft, LLC. All other trademarks or trade names used herein are the property of their
respective owners.

U.S. GOVERNMENT RIGHTS

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the OSIsoft,
LLC license agreement and as provided in DFARS 227.7202, DFARS 252.227-7013, FAR 12.212, FAR
52.227, as applicable. OSIsoft, LLC.

Published: March 20, 2019

http://www.osisoft.com/

Table of Contents

1. Introduction .. 4

1.1 Overview ... 4

1.2 Setup ... 4

2. Background ... 5

2.1 What is the PI Connector for UFL .. 5

2.2 Terminology and Important Concepts .. 5

2.3 REST API .. 6

2.4 Data Flow .. 7

2.5 PI Connector for UFL vs PI Interface for UFL ... 8

2.6 Tools and Utilities .. 8

3. Data Parsing in the PI Connector for UFL .. 10

3.1 Basic INI configuration file structure .. 10

3.2 Collections ... 10

3.3 Predefined Variables ... 10

3.4 Main Functions to Interact with the PI Server .. 11

3.5 Native Functions for CSV & JSON .. 12

4. Exercise 1 – Parsing a CSV File with Variable Number of Columns ... 14

4.1 Objectives .. 14

4.2 Step 1: Add a PI Data Archive and PI Asset Framework Server .. 14

4.3 Step 2: Configure data sources ... 17

4.4 Step 3: Start the connector ... 21

4.5 INI Configuration file contents .. 24

5. Exercise 2 – Capture data from a REST API endpoint ... 25

5.1 Step 1 – Explore the REST API ... 25

5.2 Step 2 – Exploring the JSON response .. 26

5.3 Step 3 – Configure the Data Source .. 27

5.4 Step 4 – Inspect the AF Structure created and the PI Vision display .. 28

5.5 Step 5 – Parsing the JSON response .. 29

5.6 Step 6 –Multiple Cities Using the UFL_Placeholder .. 31

5.7 Step 7 – Explore the Changes Made to the AF Structure and PI Vision Display ... 32

6. Reference list .. 33

4 | P a g e

1. Introduction

1.1 Overview

This lab will explore the new features of the PI Connector for UFL to parse multi-column data files and

using RESTful data sources with the PI Connector for UFL to collect information from a public REST API,

and then send the data to a PI Server (Data Archive and AF server.)

In this lab, users will gain the knowledge required to perform basic setup, configuration and

troubleshooting for this connector to be able to parse data from REST APIs and data files.

1.2 Setup

This lab assumes the following:

• Running instances of the PI Server (Data Archive, AF Server) and PI Vision

• Running instance of a PI Connector for UFL

5 | P a g e

2. Background

2.1 What is the PI Connector for UFL

The PI Connector for UFL allows the transfer of contextual and time-series data from ASCII files, REST

clients and REST servers to the OSIsoft PI Server (Data Archive, Asset Framework).

2.2 Terminology and Important Concepts

2.2.1 REST

• REpresentational State Transfer is an architectural style for providing standards between RESTful

systems. There are 3 HTTP verbs (kind of operation) that can be used with the PI Connector for

UFL to interact between REST server and a REST client:

• PUT – updates the specific resource

• POST – creates a new resource

• GET – retrieves a specific resource

2.2.2 HTTPS

• Encrypted adaptation of HTTP for secure communication across a network.

2.2.3 JSON

• JavaScript Object Notation (JSON) is a lightweight data-interchange format that is easy for both

humans and machines to read. It has widely replaced XML since it is easier to read and parse.

• JSON is built on two structures:

▪ Object: collection of string/value pairs

▪ Array: collection of values

• {Object} – unordered data held in curly braces

• [Array] – ordered list of objects held in square brackets

6 | P a g e

• Value:

A JSON file will be sent between the server and the client. Here is an example JSON object in its

compact form:
{"list":[{"weather":{"Temperature":20,"Condition":"clear sky"},"name":"San

Francisco"},{"weather":{"Temperature":8,"Condition":"mist"},"name":"London"}]}

For readability’s sake, the JSON object is generally represented as such:
{

 "list":[

 {

 "weather":{

 "Temperature":20,

 "Condition":"clear sky"

 },

 "name":"San Francisco"

 },

 {

 "weather":{

 "Temperature":8,

 "Condition":"mist"

 },

 "name":"London"

 }

]

 }

2.3 REST API

An API is an application programming interface. It is a set of rules that programs use to communicate with

each other. An API server is developed to allow clients to communicate with it. REST determines the

architecture of the API. Each URL is called a request while the data sent back is called a response. As part

of this lab, Exercise 2 uses the REST API from OpenWeatherMap. The API documentation contains the

parameters supported, examples, and more.

For a reference list of available public REST APIs, ProgrammableWeb has a list of over 20,000 available

REST APIs.

weather\temperature

weather\condition

Object 2

Object 1

https://openweathermap.org/api
https://www.programmableweb.com/

7 | P a g e

2.4 Data Flow

The PI Connector for UFL allows three Data Source Types:

• Files

From a windows directory – the files can be of any extension, as long as they are encoded

using a supported encoding.

• REST Client

The PI Connector acts as a REST client and executes GET requests on the REST endpoint

specified. The returning data format can be JSON, XML, CSV, or plain text.

Note:

For HTTP servers requiring parameters in the HTTP header, they can be defined manually in the

“%pihome64%\Connectors\UFL\Configuration\Datasource.config.json”

• REST Server

The following figure displays the data flow for the PI Connector for UFL and typical data sources.

Figure 1 - PI Connector for UFL Data Flow

8 | P a g e

2.5 PI Connector for UFL vs PI Interface for UFL

The following table summarizes the main differences between the PI Interface for UFL and the PI

Connector for UFL. The following lab focuses on the PI Connector for UFL and the exercises in the

workbook will showcase the native JSON parsing, CSV looping, REST client functionality, and AF integration

(AF Element, AF Attribute, and AF Template creation).

Table 1 - Differences between the PI Interface and the PI Connector

 PI CONNECTOR FOR
UFL

PI INTERFACE FOR
UFL

DATA SOURCE TYPE

Files Files

REST Client Serial

REST Server POP3 (emails)

AF SUPPORT Yes No

PI POINT CREATION Yes Yes

PI POINT CONFIGURATION No Yes

NATIVE JSON PARSING Yes No

SUPPORTED ENCODING
Extended ASCII

Extended ASCII
Unicode (UTF-8)

LOOPING FUNCTIONS FOR
CSV FILES

Yes No

WRITING TO FUTURE PI
POINT

Yes Yes

FUTURE PI POINT
CREATION

No Yes

CUSTOMIZABLE
COMPRESSION SETTINGS

Yes Yes

BUFFERING MECHANISM Embedded PI Buffer Subsystem

ENCRYPTED
COMMUNICATION TO
DATA ARCHIVE (WIS)

Yes Only with PI API 2.x

2.6 Tools and Utilities

Throughout this lab, a number of tools and utilities are used:

• PI Connector Administration website – All of the configuration for a PI Connector is performed

through this web app: data source configuration, the destination PI Data Archives and PI AF

Servers, etc. Additionally, this web app also allows the connector to be stopped/started and

provides diagnostic information.

• PI System Explorer – This is the primary client tool for PI AF. This tool allows a user to interact with

one or more PI AF servers: the hierarchy can be browsed and manipulated, the metadata can be

explored, attributes and elements can be configured, and so on.

9 | P a g e

• PI System Management Tools – With this management utility, a user can connect to one or more

PI Data Archives to create/edit PI points, explore archive and snapshot data, view and change PI

Data Archive settings, and other related tasks.

10 | P a g e

3. Data Parsing in the PI Connector for UFL

Regardless of the source, incoming data is treated as a set of consistently formatted lines, which are

referred to as messages. The PI Connector for UFL uses and INI file to parse the data.

Note:
The maximum line length supported by PI Connector for UFL is 5120 characters.

3.1 Basic INI configuration file structure

The INI configuration file is formatted as follows:

[FIELD]

Defines and declares data types for the individual fields that receive data.

[MSG]

Defines the types of incoming messages, and assigns a name that is used to define the section where the

message is divided.

Per message sections

For each message that is defined in the MSG section, the Per message sections filter incoming messages,

divide the messages into fields, process the fields, and then write the results to PI tags, PI AF elements, or

event frames. These sections can contain processing logic, such as logic that redirects to other sections

and skips lines from the input stream.

3.2 Collections

A variable of the Collection data type can accommodate any of the supported data types (DateTime, Time,

String, Int32, Number). It is an array of other variables. In practice, Collections are most commonly used

to stored PI Point names, AF Attributes names (dynamic and static), values, and timestamps. Sending a

command to PI to create PI Points simply becomes one operation executed by passing an array of PIPoints,

Timestamp(s), and Values.

Values of name-value pairs can be added to the Collection array using the Add() function:
 Collection = Add([name,] value)

3.3 Predefined Variables

__MESSAGE

The content of the current message (line).

11 | P a g e

__ITEM

A string variable which is assigned a value each time the JsonGetItem() or CsvGetItem() functions

are evaluated.

__ITEM_Name

A string variable which is assigned the name of the selected JSON element each time the JsonGetItem()

function is evaluated.

3.4 Main Functions to Interact with the PI Server

3.4.1 Sending data to PI Point(s)

Note:
If the PI Point, AF Element, AF Attribute, or AF Template does not exist, the connector will create it.

Note:
The square brackets indicate that those parameters are optional and can be omitted.

StoreInPi(Tag, ElementAttribute, Timestamp, Value[, Status, Questionable])
StoreEvent(Tag, ElementAttribute, Timestamp, Value[, Status, Questionable])

PARAMETER DESCRIPTION DATA TYPE

TAG Target PI Point String
ELEMENTATTRIBUTE
(OPTIONAL)

Attribute Name of the corresponding AF
Element. If omitted, the point cannot be
referenced through an AF Element

String

TIMESTAMP
(OPTIONAL)

Timestamp to be recorded with the value. If
omitted, current system time is recorded

DateTime

VALUE Value String, Int32, Number,
DateTime

StoreEvents(TagNames, ElementAttributes, TimeStamp(s), Values[, Statuses,
Questionables])

PARAMETER DESCRIPTION DATA TYPE

TAGNAMES Target PI Points Collection of String
ELEMENTATTRIBUTES
(OPTIONAL)

Attribute Names of the corresponding AF
Element. If omitted, the point cannot be
referenced through an AF Element

Collection of String

TIMESTAMP(S)
(OPTIONAL)

Timestamp to be recorded with the value. If
only one timestamp is supplied, it will be
used for all values. If omitted, current
system time is recorded

DateTime or Collection of
DateTime

VALUES Values Collection of: String,
Int32, Number,
DateTime

12 | P a g e

3.4.2 Create or Update AF Element

StoreElement(Path, Template[, DynAttributes, StatAttributes])

PARAMETER DESCRIPTION DATA TYPE

PATH Back slash delimited path to an AF Element.
Example: Gateway\Device\Dataset

String

TEMPLATE Template name in AF for the AF Element String
DYNAMIC
ATTRIBUTES
(OPTIONAL)

Collection of PI Point name (TagNames). The
AF Attributes will be named based on the
value of ElementAttribute(s) passed in the
StoreEvent(s)() function from which the
value was recorded.

Collection

STATIC
ATTRIBUTES
(OPTIONAL)

Collection of static attributes. These attributes
will be created with a DataReference = None

Collection

3.5 Native Functions for CSV & JSON

3.5.1 FOREACH()

With the FOREACH() code flow control, the connector can loop through sets of items in the following

well-known data formats: JSON and CSV.

FOREACH(condition) DO expression(s) ENDFOR

The condition can only include one of the following functions:

• CSVGetItem()
• JSONGetItem()

Below is a simplified example explaining the principle. It iterates through a collection of comma-separated

items and add the individual items to a variable of the Collection data type. This allows the

Collection Values to be populated with all the items present in the line being parsed. This syntax is

more flexible as it easily allows iterating through a variable number of items (columns for CSV)

FOREACH(CsvGetItem(__MESSAGE,",")) DO
Values = Add(__ITEM)

ENDFOR

3.5.2 CsvGetItem()

CsvGetItem("Csv_input", "Delimiter")

This function applicable in the condition part of the FOREACH() statement. It populates the predefined
string variable __ITEM with the item that is present between the Delimiter.

• Csv_input(String) is a succession of delimited values

• Delimiter(String)can be one or more characters – case sensitive

13 | P a g e

For example, a CSV using commas to separate values can be iterated in a FOREACH() loop using the
example above.

3.5.3 JsonGetItem()

JsonGetItem("Json_input", "Selector")

This function applicable in the condition part of the FOREACH() statement. It populates the predefined
string variables __ITEM and __ITEM_NAME with the object selected.

• Json_input(String) is a valid JSON array

• Selector(String) can be one or more characters – case sensitive

3.5.4 JsonGetValue()

JsonGetValue("Json_input", "Selector")

As the name indicates, JSONGetValue() is used to obtain a value from a string/value pair within an
object.

The following example would retrieve the value of Weather\Temperature. As part of a FOREACH()

statement, it would then iterate for each Objects in the array:

Temperature_Number = JsonGetValue(__ITEM,"Weather\Temperature")

14 | P a g e

4. Exercise 1 – Parsing a CSV File with Variable
Number of Columns

This exercise explores the design of the configuration file (.ini file) to parse a typical text file. The learning

environment provided has a freshly installed connector, and now only requires basic configuration to

begin data collection.

4.1 Objectives

• Create a data source for the connector

• Configure .ini file for typical dataset format

4.2 Step 1: Add a PI Data Archive and PI Asset Framework Server

Add and configure PI Data Archive and PI AF for communication with the connector.

Note:
Modifications can be completed without stopping the connector data collection.

1. Open the Administration page for the UFL Connector. There is a shortcut on the desktop as well

as the start menu under PI System > PI Connector for UFL Administration.

2. If prompted for credentials, use:

a. Username: pischool\student01

b. Password: provided in class

3. On the PI Connector Administration page, click the Server List link on the left side of the screen.

PI Data servers lists the PI Data Archives the connector will send data. The PI Asset servers lists

the PI Asset Framework server that will store the logical hierarchy of elements and metadata.

4. To add a PI Data Archive, a name and hostname is required. A name can be any identifier used to

describe the PI Data Archive, including the machine name. The hostname is the network

information of the PI Data Archive.

5. Add a name for the PI Data Archive and use PISRV01 for the hostname. Select Add to save

changes.

15 | P a g e

6. Perform the same for the PI Asset servers section. Select a name for the PI AF server and use

PISRV01 for the hostname. Select Add to save changes.

7. After adding the server, specify the name of the AF Database to be created, which will be PI UFL

Connector. The other items can be left as is. Select Keep these settings to save changes.

16 | P a g e

8. After adding the servers and saving changes, the final list should look like the following:

17 | P a g e

4.3 Step 2: Configure data sources

The connector will now parse any incoming data and send it to the specified PI Data Archive and PI Asset

Framework servers specified.

In this exercise, data from X-ray photoelectron spectroscopy (XPS) probe. A sample is loaded into a

machine, and the analyte’s elemental composition is measured using X-rays. This measurement data

generated is presented in a .csv file in the following format:

TimeStamp,Hydrogen,Helium,Lithium
1/27/2019 06:10,20.34954013,23.8979401,44.03301038
1/27/2019 06:20,52.25473449,55.95751127,19.57478451
1/27/2019 06:30,35.3680037,83.62752702,80.83267956
1/27/2019 06:40,67.87165734,12.05941163,46.46192035
1/27/2019 06:50,87.26456026,21.19993289,69.29936443
1/27/2019 07:00,73.3539596,14.81267681,40.92914766
1/27/2019 07:10,8.475626883,43.57027272,32.96403702
1/27/2019 07:20,22.36870781,37.73167597,34.7768616
1/27/2019 07:30,40.14540103,54.45435054,54.61024746
1/27/2019 07:40,61.94443169,84.13089856,15.19648365
1/27/2019 07:50,91.6951069,47.78477007,60.06808156
1/27/2019 08:00,35.8142939,19.5996841,66.49259103
1/27/2019 08:10,95.17955006,92.30584051,87.95001521
1/27/2019 08:20,29.12528214,3.817737961,70.30317159
1/27/2019 08:30,85.28168446,41.99492191,14.75110356
1/27/2019 08:40,98.69864031,98.2288604,28.03794947
1/27/2019 08:50,90.66766549,5.156088295,54.53605229
1/27/2019 09:00,80.16275714,0.728795825,85.63577164
1/27/2019 09:10,38.71803075,80.03045369,80.82624252
1/27/2019 09:20,93.80282208,80.68784985,53.29287652

The first row is the header row, labeling each column in the subsequent lines. The timestamp is designated

in the first column, and the remaining columns are the measurement values for each analyte. Depending

on the analyte’s composition, the number of columns will vary. In the PI Interface for URL, the

accommodating logic to parse a file with variable number of columns is cumbersome. The simplicity and

flexibility of new functions in the PI UFL Connector are demonstrated in this example.

1. To configure this data source, select Data Source List on the left side of the connector UI. In the

Data source name field, type XPS probe and click Add and configure.

18 | P a g e

2. An empty data source configuration page will load, and should look like

3. Provide any relevant information of choice in the description field.

19 | P a g e

4. The configuration file for this exercise has already been created. Select Choose File and navigate

to Exercise1 from the Quick Access menu. Alternatively, navigate to

C:\UFL2019\Exercise1\

and select MultiColumnsConfig_UFL_Connector.ini. This .ini configuration file contains the

parsing logic for the connector and will determine the tag names, values, and (if applicable) which

AF elements to create and store events. AF element creation will be discussed in the next exercise.

5. The Data Source Type can be left as File, since the data will be parsed from a file directory that

the lab device stores values. The connector can parse files from a local or network file directory.

6. The Address field contains the path for input files that will be processed by the connector. Insert

the following for the address:

C:\UFL2019\Exercise1\Data files*.csv

The asterisk is a wildcard character and any file with the .csv extension will be processed.

20 | P a g e

7. All other options can be left as the default settings. The final configuration should match the

next image.

Click Save to confirm changes and create the data source.

21 | P a g e

4.4 Step 3: Start the connector

8. Now that the data source is created, click Start connector to begin processing incoming or existing

data files in the specified directory. The status indicators will turn into green checkmarks.

Note:

This does not start or stop the PI UFL Connector Windows service. If the Windows service were not

running, the Administration webpage would be unavailable.

9. The connector is now checking the directory at the specified scan time (10 seconds) for new files

to process. Move and drag C:\UFL2019\Exercise1\LabResults.csv to the Data Files folder. The

LabResults.csv file will be removed from the directory as soon as the connector begins processing

it.

22 | P a g e

10. To confirm tag creation and data parsing, search for one of the elements in PI System

Management Tools. Once the application opens, use the left pane to navigate to Data > Archive

Editor, and select the Tag Search button.

11. Use the tag mask *hydrogen* to find the UFL.Hydrogen tag and click Search. Double click on the

tag to bring the selected item into the Archive Editor.

23 | P a g e

12. Change the Start Time to * and the time interval to Event Count. This will retrieve the most recent

100 values. Press to retrieve the values.

13. There are now 20 tags created for these elements. To test the flexibility of the parsing logic,

examine the C:\UFL2019\Exercise1\LabResults_100_Elements.csv. The measurement data

contained in this file has 80 more columns\elements. Drop the file in the Data files directory and

search for tags once the file is processed. There should now be 100 tags for the measurements

values.

24 | P a g e

4.5 INI Configuration file contents

[FIELD]
FIELD(1).NAME="TagNames"
FIELD(1).TYPE="Collection"
FIELD(2).NAME="Values"
FIELD(2).TYPE="Collection"
FIELD(3).NAME="Timestamp"
FIELD(3).TYPE="DateTime"
FIELD(3).FORMAT="M/dd/yyyy h:mm"

FIELD(4).NAME="Counter"
FIELD(4).TYPE="Int32"
FIELD(5).NAME="Value"
FIELD(5).TYPE="Number"

[MSG]
MSG(1).NAME="Tags"
MSG(2).NAME="Data"

[Tags]
Tags.FILTER = C1=="T*"
 TagNames = Clear()
 Counter = 0
FOREACH (CsvGetItem(__MESSAGE, ",")) DO
 IF(Counter > 0) THEN
 TagNames = Add(__ITEM)
 ENDIF
 Counter = Counter + 1
ENDFOR

[Data]
Data.FILTER = C1=="*"
 Counter = 0
 Values = Clear()
FOREACH (CsvGetItem(__MESSAGE, ",")) DO
 IF(Counter == 0) THEN
 TimeStamp = __ITEM
 ELSE
 Value = __ITEM
 Values = Add(Value)
 ENDIF
 Counter = Counter + 1
ENDFOR
 StoreEvents(TagNames, ,Timestamp, Values)

25 | P a g e

5. Exercise 2 – Capture data from a REST API endpoint

This exercise showcases the ability of the PI Connector for UFL to make GET requests to an REST API

endpoint. The connector will be configured using placeholders to make multiple requests the JSON

response will be parsed to create an AF structure that will be visualized with PI Vision. In this exercise, the

learning objectives are:

• Understand how to configure the PI Connector to act as a REST client

• Parse JSON formatted objects using native JSON functions

• Create AF Elements, AF Attributes, and AF Element Templates from the configuration file (INI)

• Use the UFL_Placeholder to execute multiple queries within one data source

5.1 Step 1 – Explore the REST API

For the data source in this exercise, OpenWeatherMap’s API will be used. The API documentation can be
found here:

https://openweathermap.org/api
This exercise focuses on requesting Current weather data but the API also makes it possible to capture
forecast data (to be stored in future PI Points), historical data, air pollution data and more. For any request
made, this REST API requires an API key. An API key is provided to make requests against this API. The API
key is located in the following file:

C:\UFL2019\Exercise2\RESTAPI\apikey.txt

Note:

Anyone can sign up for a free API key that allows up to 60 calls / minute, which should be more than

sufficient for weather data.

Start by making a simple request for current weather in San Francisco. The most basic API call uses the
following format:

api.openweathermap.org/data/2.5/weather?q={cityname}&appid={apikey}&uni
ts=imperial

Take a few minutes to execute some queries and refer to the API documentation to see what the

string:value pairs stand for.

https://openweathermap.org/api

26 | P a g e

5.2 Step 2 – Exploring the JSON response

Open Notepad++. Copy the response from the request made in Step 1 and paste it into Notepad++. The

response JSON object should look like the following:

{"coord":{"lon":-122.27,"lat":37.8},"weather":[{"id":521,"main":"Rain","description":"shower

rain","icon":"09d"},{"id":701,"main":"Mist","description":"mist","icon":"50d"},{"id":721,"main

":"Haze","description":"haze","icon":"50d"}],"base":"stations","main":{"temp":283.95,"pressure

":1003,"humidity":92,"temp_min":282.05,"temp_max":286.15},"visibility":1207,"wind":{"speed":5.

1,"deg":80},"rain":{"1h":0.96},"clouds":{"all":90},"dt":1550085660,"sys":{"type":1,"id":5154,"

message":0.0043,"country":"US","sunrise":1550070016,"sunset":1550108804},"id":5378538,"name":"

Oakland","cod":200}

For better readability, the JSON Object can be observed using the JSTool plugin in Notepad++. Navigate

to Plugins -> JSTool - > JSON Viewer. The JSON Viewer pane opens and allows seeing the content of each

object or array:

https://github.com/sunjw/jstoolnpp

27 | P a g e

With the single-city current weather request, the JSON response is an object that also contains multiple

child objects. Weather is an array so the FOREACH() statement would need to be used to parse the array

one object at a time. If one were to make a multi-city query, the entire response would be an array (one

object per city), so an additional FOREACH() would be required to parse the entire response one city at a

time.

5.3 Step 3 – Configure the Data Source

Create a new Data Source with the following parameters:

PARAMETER VALUE

DATA SOURCE NAME Weather Monitoring
CONFIGURATION FILE "C:\UFL2019\Exercise2\INI\UFL_weather.ini"
DATA SOURCE TYPE REST Client
ENCODING Extended ASCII
ADDRESS REST API request built in Step 1
USER NAME / PASSWORD -
SCAN TIME (S) 20
NEW LINE -
WORD WRAP -1

Once the data source has been configured, save it and make sure that your PI Connector is still running.

It will start making GET requests on the Address defined in the data source configuration and parse the

JSON response.

28 | P a g e

5.4 Step 4 – Inspect the AF Structure created and the PI Vision
display

Using PI System Explorer (PI System -> PI System Explorer (64-bit)) and navigate to:
 \\PISRV01\PI UFL Connector\UFL\Weather Monitoring

Note:

Hit the “Refresh” button at the top to see the database update

The following AF Structure is created by the connector:

As part of this Lab, a PI Vision display was already created. Since the PI Vision display is created based on
the template “UFL.WeatherTemplate”, it can now be accessed for the city for which the request was
made.

29 | P a g e

5.5 Step 5 – Parsing the JSON response

A sample INI configuration file is provided in "C:\UFL2019\Exercise2\INI\UFL_weather.ini".
Note:

OSIsoft GitHub repo (https://github.com/osisoft/PI-Connector-for-UFL-Samples) has many examples

available. It contains complete projects such as the one in this lab, DragonBoard, RaspberryPI, Arduino,

and many others.

The INI file uses the native JSON functions described in the Introduction section. More details and

examples can also be found in the User Guide.

[FIELD]
FIELD(1).NAME="City"
FIELD(2).NAME="TagNames"
 TagNames.TYPE="Collection"
FIELD(3).NAME="Values"
 Values.TYPE="Collection"
FIELD(4).NAME="AttributeNames"
 AttributeNames.TYPE="Collection"
FIELD(5).NAME="StaticAttributes"
 StaticAttributes.TYPE="Collection"
FIELD(6).NAME="JSONResponse"
FIELD(7).NAME="temp"
 temp.TYPE="Number"
FIELD(8).NAME="pressure"
 pressure.TYPE="Number"
FIELD(9).NAME="humidity"
 humidity.TYPE="Number"
FIELD(10).NAME="windspeed"
 windspeed.TYPE="Number"
FIELD(11).NAME="sunrise"
 sunrise.TYPE="DateTime"
 sunrise.FORMAT="SECONDS_GMT"
FIELD(12).NAME="sunset"
 sunset.TYPE="DateTime"
 sunset.FORMAT="SECONDS_GMT"
FIELD(13).NAME="GPS_Lon"
 GPS_Lon.TYPE="Number"
FIELD(14).NAME="GPS_Lat"
 GPS_Lat.TYPE="Number"
FIELD(15).NAME="ElementName"

[MSG]
MSG(1).NAME="Data"

[Data]
Data.FILTER=C1=="*"
JSONResponse = __MESSAGE

'Since the city name will be used to define the TagNames, the value is collected
first
City = JsonGetValue(JSONResponse, "name")

'Clear the collections
TagNames = Clear()
Values = Clear()

https://github.com/osisoft/PI-Connector-for-UFL-Samples

30 | P a g e

AttributeNames = Clear()
StaticAttributes = Clear()

'Build the TagNames collection for the PI Points to be created
Tagnames = Add(city + "_temp")
Tagnames = Add(city + "_pressure")
Tagnames = Add(city + "_humidity")
Tagnames = Add(city + "_windspeed")
Tagnames = Add(city + "_sunset")
Tagnames = Add(city + "_sunrise")

'Build the Static Attributes
GPS_Lat = JsonGetValue(JSONResponse, "coord\lat")
GPS_Lon = JsonGetValue(JSONResponse, "coord\lon")
StaticAttributes = Add("Latitude",GPS_Lat)
StaticAttributes = Add("Longitude",GPS_Lon)
StaticAttributes = Add("City",City)

'Capture the Values for all the variables of interest
'For nested objects, the backslash can be used to get the full path of the
string:value pair
'This array (collection) needs to be in the same order as the tagnames
temp = JsonGetvalue(JSONResponse, "main\temp")
 Values = Add(temp)
pressure = JsonGetValue(JSONResponse, "main\pressure")
 Values = Add(pressure)
humidity = JsonGetValue(JSONResponse, "main\humidity")
 Values = Add(humidity)
windspeed = JsonGetValue(JSONResponse, "wind\speed")
 Values = Add(windspeed)
sunset = JsonGetValue(JSONResponse, "sys\sunset")
 Values = Add(sunset)
sunrise = JsonGetValue(JSONResponse, "sys\sunrise")
 Values = Add(sunrise)

'Build the AttributeNames array
AttributeNames=Add("Temperature")
AttributeNames=Add("Pressure")
AttributeNames=Add("Humidity")
AttributeNames=Add("Wind Speed")
AttributeNames=Add("Sunset Time")
AttributeNames=Add("Sunrise Time")

'Store the values in PI
StoreEvents(TagNames,AttributeNames,,Values)
'Create the Parent Element
StoreElement("Weather_Monitoring")
'Create the AF Element to store the attributes in
ElementName="Weather_Monitoring\" + City
StoreElement(ElementName, "WeatherTemplate",tagnames,StaticAttributes)

31 | P a g e

5.6 Step 6 –Multiple Cities Using the UFL_Placeholder

In the previous steps, the data source was configured for one specific city. To query more than one city,

there a couple of possible approaches:

1. If the REST API supports it, make an API call that requests multiple cities at once and returns the

result in an array

2. Using UFL_Placeholder, configure the connector to make multiple GET requests on the target

REST API to return a series of JSON responses

An example INI, API GET request, and a data file are provided in the Reference list.

In this exercise, users will configure the connector to request a minimum of 5 cities of choice using the

second method. Build the query and update the Address field in the Data Source Configuration.

Note:
The PI Connector for UFL does not require a restart or to stop the connector to make configuration

changes to the data sources.

The following example shows how UFL_Placeholder can be used to turn one REST API request (Address)

into multiple queries:

Address =
api.openweathermap.org/data/2.5/weather?q=UFL_PLACEHOLDER&appid={key}&units=imperial|

Montreal|Houston|Prague|Berlin|Tokyo

This query would execute the following:

• api.openweathermap.org/data/2.5/weather?q=Montreal&appid={key}&units=imperial

• api.openweathermap.org/data/2.5/weather?q=Houston&appid={key}&units=imperial

• api.openweathermap.org/data/2.5/weather?q=Prague&appid={key}&units=imperial

• api.openweathermap.org/data/2.5/weather?q=Berlin&appid={key}&units=imperial

• api.openweathermap.org/data/2.5/weather?q=Tokyo&appid={key}&units=imperial

32 | P a g e

5.7 Step 7 – Explore the Changes Made to the AF Structure and PI
Vision Display

With the cities added as placeholders, the connector made multiple GET requests and created the AF

hierarchy automatically.

Since the PI Vision display from Step 5 leverages AF templates, all cities are now accessible in the

display.

33 | P a g e

6. Reference list

JSTool
 A JavaScript (JSON) tool for Notepad++ (formerly JSMinNpp) and Visual Studio Code.

https://github.com/sunjw/jstoolnpp

Notepad++

Notepad++: a free source code editor which supports several programming languages running
under the MS Windows environment.
https://notepad-plus-plus.org/

OpenWeatherMap API
OpenWeatherMap is an online service that provides weather data, including current weather
data, forecasts, and historical data via a REST api
https://openweathermap.org/

GitHub repository with examples

Documentation and supporting files to demonstrate usage of the PI Connector for UFL REST
endpoint
http://github.com/osisoft/PI-Connector-for-UFL-Samples/

List of publicly available REST APIs
 https://www.programmableweb.com/apis/directory

https://github.com/sunjw/jstoolnpp
https://notepad-plus-plus.org/
https://openweathermap.org/
http://github.com/osisoft/PI-Connector-for-UFL-Samples/
https://www.programmableweb.com/apis/directory

34 | P a g e

35 | P a g e

Save the Date!

OSIsoft PI World Users Conference in Gothenburg, Sweden. September 16-19, 2019.

Register your interest now to receive updates and notification early bird registration opening.

https://pages.osisoft.com/UC-EMEA-Q3-19-PIWorldGBG-

RegisterYourInterest_RegisterYourInterest-LP.html?_ga=2.20661553.86037572.1539782043-

591736536.1533567354

http://pages.osisoft.com/UC-CORP-Q3-18-EMEAUsersConference_RegisterYourInterest2018.html

